Global Coasts: A Baroque Embarrassment of Riches
Abstract
:1. Humans at the Edge of the Sea: The Coastal Connection
‘A striking characteristic of most coastal barriers in their natural state is their tendency to migrate or recede gradually landward. That being so, it hardly seems sensible that people build houses on shifting sands. Perhaps that can be explained by man’s romantic love of the sea.’ [1]
1.1. Vulnerable Coastal Cities Arising from ‘Man’s Love of the Sea’
1.2. Coasts as Ever-Changing and Malleable Seascapes
1.3. Coasts Connect People with the Ocean and with Ocean Life
1.4. Wildlife on Coasts: ‘Nature Red in Tooth and Claw’
2. Coasts as Windows to Our Past
2.1. Coastal Societies and Cultures at the Edge of a Violent Sea
2.2. Shelled Seafood Is a Prime Source of Nutrition That Creates Rich Historical Records
2.3. ‘Blood on the Sand’: Humans as Coastal Scavengers and Hunters
3. A Potpourri of Ten ‘Cool’ Beach Facts
- (1.)
- Beach Landscapes: Ridges, Runnels, Scallops, Ripples, Bars and Pyramids!
- (2.)
- The Vanity of the Sands: Every Single Sand Grain Has a Story.
- (3.)
- Oxygen Factories in the Sands: Minute Plant Life Blooms on Beaches.
- (4.)
- Worms and Other Cool Creatures Lurk in Beach Sands.
- (5.)
- Beach Life Amongst the Touchy Kiwis.
- (6.)
- ‘Like a Rolling Stone’: Sand Grains on The Move.
- (7.)
- Crabs That Breath Air with their Legs.
- (8.)
- Vegan Beach Flies Wearing Stilettos Feed by Step Dancing.
- (9.)
- Surfing Beach Snails Are Über-Cool.
- (10.)
- Incisive Decisions in Evolution and the Grant Meetings of the Mammals: It All Happens on Coasts.
4. Human Stressors Impacting Coastal Systems
4.1. Retreating Sandy Shorelines
4.2. Pollutants That Connect Coastal Systems
4.3. Human Impacts on Sandy Shores: A Diverse Collection of Impact Types
5. Principles to Guide Environmental Solutions
5.1. Protect Remaining Natural Land
5.2. Working with Nature to Enhance the Resilience of Coasts
5.3. Common Goals for a Common Good
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Culliton, B.J. Save the beaches, not the buildings. Nature 1992, 357, 535. [Google Scholar] [CrossRef]
- Morgan, C. Japan′s high-tech planners dream of Australia′s beaches. Nature 1988, 332, 195. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Sousa, D.; Yetman, G.; Elvidge, C.; MacManus, K. Decades of urban growth and development on the Asian megadeltas. Glob. Planet. Change 2018, 165, 62–89. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The Rising tide: Assessing the risks of climate change and human settlements in low-elevation coastal zones. In Adapting Cities to Climate Change: Understanding and Addressing the Development Challenges; Taylor & Francis Group: London, UK, 2012; pp. 51–76. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 2016, 11, 084003. [Google Scholar] [CrossRef]
- Provost, E.J.; Coleman, M.A.; Butcher, P.A.; Colefax, A.; Schlacher, T.A.; Bishop, M.J.; Connolly, R.M.; Gilby, B.L.; Henderson, C.J.; Jones, A.; et al. Quantifying human use of sandy shores with aerial remote sensing technology: The sky is not the limit. Ocean Coast. Manag. 2021, 211, 105750. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; O’Connor, M.C.; McIvor, S. Coastal defences versus coastal ecosystems: A regional appraisal. Mar. Policy 2020, 111, 102332. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, e6641. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Schoeman, D.S.; Lastra, M.; Jones, A.; Dugan, J.; Scapini, F.; McLachlan, A. Neglected ecosystems bear the brunt of change. Ethol. Ecol. Evol. 2006, 18, 349–351. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Schoeman, D.S.; Dugan, J.E.; Lastra, M.; Jones, A.; Scapini, F.; McLachlan, A. Sandy beach ecosystems: Key features, sampling issues, management challenges and climate change impacts. Mar. Ecol. 2008, 29, 70–90. [Google Scholar] [CrossRef]
- Schoeman, D.S.; Schlacher, T.A.; Defeo, O. Climate-change impacts on sandy-beach biota: Crossing a line in the sand. Glob. Change Biol. 2014, 20, 2383–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlacher, T.A.; Dugan, J.; Schoeman, D.S.; Lastra, M.; Jones, A.; Scapini, F.; McLachlan, A.; Defeo, O. Sandy beaches at the brink. Divers. Distrib. 2007, 13, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Richards, H.G. The occurrence of old meadow sod under the New Jersey beaches. Science 1931, 73, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Breuil, H. Pleistocene raised beaches on the west coast of Morocco. Nature 1942, 149, 77–78. [Google Scholar] [CrossRef]
- Leatherman, S.P. Barrier dynamics and landward migration with Holocene sea-level rise. Nature 1983, 301, 415–417. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Change 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Raised beaches of New Zealand. Nature 1931, 127, 571–572.
- Yeh, H.; Liu, P.; Briggs, M.; Synolakis, C. Propagation and amplification of tsunamis at coastal boundaries. Nature 1994, 372, 353–355. [Google Scholar] [CrossRef]
- Dugan, J.E.; Airoldi, L.; Chapman, M.G.; Walker, S.J.; Schlacher, T.A. Estuarine and coastal structures: Environmental effects. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 8, pp. 17–41. [Google Scholar] [CrossRef]
- Belknap, D.F.; Sandweiss, D.H. Effect of the Spanish Conquest on coastal change in Northwestern Peru. Proc. Natl. Acad. Sci. USA 2014, 111, 7986–7989. [Google Scholar] [CrossRef]
- Burgos, A.; Younger, A.C.; Wolverton, S. Human mollusk interactions in a changing world. J. Ethnobiol. 2019, 39, 175–181. [Google Scholar] [CrossRef]
- Fraser, C. Eat the Beach: A guide to the edible seashore—Coastal Survival Handbook; Practical Inspiration Publishing: Stockport, UK, 2013. [Google Scholar]
- Barber, H.N.; Dadswell, H.E.; Ingle, H.D. Transport of driftwood from South America to Tasmania and Macquarie Island. Nature 1959, 184, 203–204. [Google Scholar] [CrossRef]
- Bird, J.B. Littorina littorea: Occurrence in a northern newfoundland beach terrace, predating norse settlements. Science 1968, 159, 114. [Google Scholar] [CrossRef] [Green Version]
- Malakoff, D. Scientists use strandings to bring species to life. Science 2001, 293, 1754–1757. [Google Scholar] [CrossRef] [PubMed]
- Blandford, M.I.; Katouli, M.; Gilby, B.L.; O’Dea, C.; Olds, A.D.; Schlacher, T.A. Not all rotten fish stink: Microbial changes in decaying carcasses increase cytotoxicity and potential risks to animal scavengers. Estuar. Coast. Shelf Sci. 2019, 227, e106350. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Strydom, S.; Connolly, R.M. Multiple scavengers respond rapidly to pulsed carrion resources at the land-ocean interface. Acta Oecol. 2013, 48, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, C.M.; Schlacher, T.A.; McVeigh, R.R.; Schoeman, D.S.; Olds, A.D.; Brown, M.B.; Ekanayake, K.B.; Weston, M.A.; Connolly, R.M. Functional replacement across species pools of vertebrate scavengers separated at a continental scale maintains an ecosystem function. Funct. Ecol. 2016, 30, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Slovic, P.; Västfjäll, D.; Erlandsson, A.; Gregory, R. Iconic photographs and the ebb and flow of empathic response to humanitarian disasters. Proc. Natl. Acad. Sci. USA 2017, 114, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Byard, R.W.; James, R.A.; Heath, K.J. Recovery of human remains after shark attack. Am. J. Forensic Med. Pathol. 2006, 27, 256–259. [Google Scholar] [CrossRef]
- Borland, H.P.; Gilby, B.L.; Henderson, C.J.; Leon, J.X.; Schlacher, T.A.; Connolly, R.M.; Pittman, S.J.; Sheaves, M.; Olds, A.D. The influence of seafloor terrain on fish and fisheries: A global synthesis. Fish Fish. 2021, 22, 707–734. [Google Scholar] [CrossRef]
- Borland, H.P.; Schlacher, T.A.; Gilby, B.L.; Connolly, R.M.; Yabsley, N.A.; Olds, A.D. Habitat type and beach exposure shape fish assemblages in the surf zones of ocean beaches. Mar. Ecol. Prog. Ser. 2017, 570, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Olds, A.D.; Vargas-Fonseca, E.; Connolly, R.M.; Gilby, B.L.; Huijbers, C.M.; Hyndes, G.A.; Layman, C.A.; Whitfield, A.K.; Schlacher, T.A. The ecology of fish in the surf zones of ocean beaches: A global review. Fish Fish. 2018, 19, 78–89. [Google Scholar] [CrossRef]
- Mosman, J.D.; Henderson, C.J.; Olds, A.D.; Gilby, B.L.; Schlacher, T.A. Seascape connectivity exerts differing effects for fish assemblages in distinct habitats of the surf zones of ocean beaches. ICES J. Mar. Sci. 2020, 77, 1033–1042. [Google Scholar] [CrossRef]
- Grobman, A.; Bonavia, D. Pre-ceramic maize on the north-central coast of Peru. Nature 1978, 276, 386–387. [Google Scholar] [CrossRef]
- Sandweiss, D.H.; Solis, R.S.; Moseley, M.E.; Keefer, D.K.; Ortloff, C.R. Environmental change and economic development in coastal Peru between 5,800 and 3,600 years ago. Proc. Natl. Acad. Sci. USA 2009, 106, 1359–1363. [Google Scholar] [CrossRef] [Green Version]
- Engel, M.; Pilarczyk, J.; May, S.M.; Brill, D.; Garrett, E. (Eds.) Front Matter; Elsevier: Amsterdam, The Netherlands, 2020; p. iii. [Google Scholar] [CrossRef]
- Monecke, K.; Finger, W.; Klarer, D.; Kongko, W.; McAdoo, B.G.; Moore, A.L.; Sudrajat, S.U. A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 2008, 455, 1232–1234. [Google Scholar] [CrossRef]
- Bovy, K.M.; Watson, J.E.; Dolliver, J.; Parrish, J.K. Distinguishing offshore bird hunting from beach scavenging in archaeological contexts: The value of modern beach surveys. J. Archaeol. Sci. 2016, 70, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Meager, J.; Schlacher, T.A.; Green, M. Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Mar. Ecol. Prog. Ser. 2011, 428, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Meager, J.J.; Schlacher, T.A. New metric of microhabitat complexity predicts species richness on a rocky shore. Mar. Ecol. 2013, 34, 484–491. [Google Scholar] [CrossRef]
- Soares, A.G.; McLachlan, A.; Schlacher, T.A. Disturbance effects of stranded kelp on populations of the sandy beach bivalve Donax serra (Roeding). J. Exp. Mar. Biol. Ecol. 1996, 205, 165–186. [Google Scholar] [CrossRef]
- Soares, A.G.; Schlacher, T.A.; McLachlan, A. Carbon and nitrogen exchange between sandy beach clams (Donax serra) and kelp beds in the Benguela coastal upwelling region. Mar. Biol. 1997, 127, 657–664. [Google Scholar] [CrossRef]
- Clifford, P.; Semeniuk, V. Sedimentary processes, stratigraphic sequences and middens: The link between archaeology and geoheritage—A case study from the Quaternary of the Broome region, Western Australia. Aust. J. Earth Sci. 2019, 66, 955–972. [Google Scholar] [CrossRef]
- Sherwood, J.E.; McNiven, I.J.; Laurenson, L. The Moyjil site, south-west Victoria, Australia: Shells as evidence of the deposit’s origin. Proc. R. Soc. Vic. 2018, 130, 50–70. [Google Scholar] [CrossRef]
- Dunnett, G. Prion Beach Rockshelter: Seabirds and Offshore Islands in Southwest Tasmania. Aust. Archaeol. 1992, 34, 22–28. [Google Scholar] [CrossRef]
- Stringer, C.B.; Finlayson, J.C.; Barton, R.N.E.; Fernández-Jalvo, Y.; Cáceres, I.; Sabin, R.C.; Rhodes, E.J.; Currant, A.P.; Rodríguez-Vidal, J.; Giles-Pacheco, F.; et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl. Acad. Sci. USA 2008, 105, 14319–14324. [Google Scholar] [CrossRef] [Green Version]
- Karnad, D. The persistence of the Striped Hyena Hyaena hyaena Linnaeus, 1758 (Mammalia: Carnivora: Hyaenidae) as a predator of Olive Ridley Sea Turtle Lepidochelys olivacea Eschscholtz, 1829 (Reptilia: Testudines: Cheloniidae) eggs. J. Threat. Taxa 2017, 9, 11100–11102. [Google Scholar] [CrossRef] [Green Version]
- Abbay, R. Note on a consolidated beach in Ceylon. Nature 1879, 21, 184–185. [Google Scholar] [CrossRef] [Green Version]
- Cornish, V. Sea-beaches and sandbanks. Nature 1898, 58, 42–44. [Google Scholar] [CrossRef] [Green Version]
- Cornaglia, P. The Formation of Beaches. Nature 1892, 45, 362–363. [Google Scholar] [CrossRef]
- Baker, J.R. Natural pyramids on a beach in the new hebrides. Nature 1928, 122, 843–844. [Google Scholar] [CrossRef]
- Short, A.D. (Ed.) Handbook of Beach and Shoreface Morphodynamics; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Krinsley, D.; Takahashi, T. Surface textures of sand grains: An application of electron microscopy. Science 1962, 135, 923–925. [Google Scholar] [CrossRef]
- Koop, K.; Griffiths, C.L. The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach. Mar. Biol. 1982, 66, 295–300. [Google Scholar] [CrossRef]
- McLachlan, A.; Turner, I. The Interstitial Environment of Sandy Beaches. Mar. Ecol. 1994, 15, 177–212. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Hartwig, J. Bottom-up control in the benthos of ocean-exposed sandy beaches? Austral Ecol. 2013, 38, 177–189. [Google Scholar] [CrossRef]
- Herdman, W.A. Dinoflagellates and diatoms on the beach. Nature 1911, 86, 554. [Google Scholar] [CrossRef] [Green Version]
- Herdman, W.A. Minute life on our sea-beaches. Nature 1912, 90, 371–373. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.S. Anaerobiosis in marine sandy beaches. Science 1960, 132, 616–617. [Google Scholar] [CrossRef]
- Sawaya, P. Balanoglossus gigas Fr. Müller rediscovered on the brazilian coast. Nature 1951, 167, 730–731. [Google Scholar] [CrossRef]
- Boaden, P.J.S. Littoral interstitial species from anglesey representing three families new to Britain. Nature 1961, 191, 512. [Google Scholar] [CrossRef]
- MacIntyre, R.J. The Supra-Littoral Fringe of New Zealand Sand Beaches. Trans. R. Soc. N. Z. 1963, 1, 89–103. [Google Scholar]
- Cunningham, S.J. Tactile Senses and Foraging in Birds, with Emphasis on Kiwi: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Ecology at Massey University, Manawatu, New Zealand. Ph.D. Thesis, Massey University, Manawatu, New Zealand, 2010. [Google Scholar]
- Maddox, J. Endless ripples on the sands of time. Nature 1993, 364, 385. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Chapman and Hall, Ltd.: London, UK, 1974. [Google Scholar] [CrossRef]
- Maitland, D.P. Crabs that breathe air with their legs-scopimera and dotilla. Nature 1986, 319, 493–495. [Google Scholar] [CrossRef]
- Cheng, L.; Lewin, R.A. Fluidisation as a feeding mechanism in beach flies. Nature 1974, 250, 167–168. [Google Scholar] [CrossRef]
- Brown, A.C. Surfing in the sandy-beach whelk Bullia digitalis (Dillwyn). Afr. Zool. 2001, 36, 121–127. [Google Scholar] [CrossRef]
- Odendaal, F.J.; Turchin, P.; Hoy, G.; Wickens, P.; Wells, J.; Schroeder, G. Bullia digitalis (Gastropoda) actively pursues moving prey by swash-riding. J. Zool. 1992, 228, 103–113. [Google Scholar] [CrossRef]
- Brown, A.C.; Turner, L.G.W. Expansion of the foot in Bullia (gastropoda). Nature 1962, 195, 98–99. [Google Scholar] [CrossRef]
- Jaffe, K. Surfing ants. Fla. Entomol. 1993, 76, 182–183. [Google Scholar] [CrossRef]
- Novacek, M.J. Whales leave the beach. Nature 1994, 368, 807. [Google Scholar] [CrossRef]
- Kimber, O.; Gilby, B.L.; Henderson, C.J.; Olds, A.D.; Connolly, R.M.; Maslo, B.; Weston, M.A.; Rowden, A.; Kelaher, B.; Schlacher, T.A. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea: Beach Fox Habitat Choice. Glob. Ecol. Conserv. 2020, 23, e01071. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Jones, A.R.; Dugan, J.E.; Weston, M.A.; Harris, L.L.; Schoeman, D.S.; Hubbard, D.; Scapini, F.; Nel, R.; Lastra, M.; et al. Open-coast sandy beaches and coastal dunes. In Coastal Conservation; Lockwood, J.L., Maslo, B., Eds.; Cambridge University Press: Cambridge, UK, 2014; Chapter 5; pp. 37–94. [Google Scholar] [CrossRef]
- Carter, R.W.G.; Woodroffe, D. ; EDITORS. Coastal Evolution, Late Quaternary Shoreline Morphodynamics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Tamura, T.; Nguyen, V.L.; Ta, T.K.O.; Bateman, M.D.; Gugliotta, M.; Anthony, E.J.; Nakashima, R.; Saito, Y. Long-term sediment decline causes ongoing shrinkage of the Mekong megadelta, Vietnam. Sci. Rep. 2020, 10, 8085. [Google Scholar] [CrossRef]
- Redman, J.R. Sea-shore alluvion—Calshot and Hurst beaches. Nature 1882, 26, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Hunt, A.R. The formation and erosion of beaches. Nature 1892, 45, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, W.H. The wearing away of sand beaches. Nature 1899, 60, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Bryant, E. Regional sea level, Southern Oscillation and beach change, New South Wales, Australia. Nature 1983, 305, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, T. The case of the vanishing beaches. Nature 1997, 388, 27. [Google Scholar] [CrossRef]
- Hursta, M.D.; Rood, D.H.; Ellis, M.A.; Anderson, R.S.; Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl. Acad. Sci. USA 2016, 113, 13336–13341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulff, F.V.; Rahm, L.A.; Larsson, P. (Eds.) A Systems Analysis of the Baltic Sea; Springer: Berlin, Heidelberg, Germany, 2001. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R. DDT residues: Distribution of concentrations in Emerita analoga (Stimpson) along coastal California. Science 1971, 174, 606–608. [Google Scholar] [CrossRef]
- Okera, W. Tar pollution of Sierra Leone beaches. Nature 1974, 252, 682. [Google Scholar] [CrossRef]
- Regnier, A.P.; Park, R.W.A. Faecal pollution of our beaches—How serious is the situation? Nature 1972, 239, 408–410. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Thompson, L. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 2012, 147, 123–132. [Google Scholar] [CrossRef]
- Gaston, T.F.; Schlacher, T.A.; Connolly, R.M. Flood discharges of a small river into open coastal waters: Plume traits and material fate. Estuar. Coast. Shelf Sci. 2006, 69, 4–9. [Google Scholar] [CrossRef]
- Connolly, R.M.; Schlacher, T.A.; Gaston, T.F. Stable isotope evidence for trophic subsidy of coastal benthic fisheries by river discharge plumes generated off small estuaries. Mar. Biol. Res. 2009, 5, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Skillington, A.J.; Connolly, R.M.; Robinson, W.; Gaston, T.F. Coupling between marine plankton and freshwater flow in the plumes off a small estuary. Int. Rev. Hydrobiol. 2008, 6, 641–658. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Connolly, R.M.; Skillington, A.J.; Gaston, T.F. Can export of organic matter from estuaries support zooplankton in nearshore, marine plumes? Aquat. Ecol. 2009, 43, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Connolly, R.M. Land-ocean coupling of carbon and nitrogen fluxes on sandy beaches. Ecosystems 2009, 12, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Lucrezi, S.; Connolly, R.M.; Peterson, C.H.; Gilby, B.L.; Maslo, B.; Olds, A.D.; Walker, S.J.; Leon, J.X.; Huijbers, C.M.; et al. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuar. Coast. Shelf Sci. 2016, 169, 56–73. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Schoeman, D.S.; Jones, A.R.; Dugan, J.E.; Hubbard, D.M.; Defeo, O.; Peterson, C.H.; Weston, M.A.; Maslo, B.; Olds, A.D.; et al. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. J. Environ. Manag. 2014, 144, 322–335. [Google Scholar] [CrossRef]
- Costa, L.L.; Zalmon, I.R.; Fanini, L.; Defeo, O. Macroinvertebrates as indicators of human disturbances on sandy beaches: A global review. Ecol. Indic. 2020, 118, 106764. [Google Scholar] [CrossRef]
- Brook, T.W.; Gilby, B.L.; Olds, A.D.; Connolly, R.M.; Henderson, C.J.; Schlacher, T.A. The effects of shoreline armouring on estuarine fish are contingent upon the broader urbanisation context. Mar. Ecol. Prog. Ser. 2018, 605, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Henderson, C.J.; Gilby, B.L.; Schlacher, T.A.; Connolly, R.M.; Sheaves, M.; Flint, N.; Borland, H.P.; Olds, A.D. Contrasting effects of mangroves and armoured shorelines on fish assemblages in tropical estuarine seascapes. ICES J. Mar. Sci. 2019, 76, 1052–1061. [Google Scholar] [CrossRef]
- Hubbard, D.M.; Dugan, J.E.; Schooler, N.K.; Viola, S.M. Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci. 2014, 150, 67–75. [Google Scholar] [CrossRef]
- Jaramillo, E.; Dugan, J.; Hubbard, D.; Manzano, M.; Duarte, C. Ranking the ecological effects of coastal armoring on mobile macroinvertebrates across intertidal zones on sandy beaches. Sci. Total Environ. 2021, 755, 142573. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, E.; Dugan, J.E.; Hubbard, D.M.; Melnick, D.; Manzano, M.; Duarte, C.; Campos, C.; Sanchez, R. Ecological implications of extreme events: Footprints of the 2010 earthquake along the Chilean coast. PLoS ONE 2012, 7, e35348. [Google Scholar] [CrossRef] [Green Version]
- Rodil, I.F.; Jaramillo, E.; Acuña, E.; Manzano, M.; Velasquez, C. Long-term responses of sandy beach crustaceans to the effects of coastal armouring after the 2010 Maule earthquake in South Central Chile. J. Sea Res. 2016, 108, 10–18. [Google Scholar] [CrossRef]
- Lucrezi, S.; Schlacher, T.A.; Robinson, W. Can storms and shore armouring exert additive effects on sandy beach habitats and biota? Mar. Freshw. Res. 2010, 61, 951–962. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Noriega, R.; Jones, A.; Dye, T. The effects of beach nourishment on benthic invertebrates in eastern Australia: Impacts and variable recovery. Sci. Total Environ. 2012, 435–436, 411–417. [Google Scholar] [CrossRef] [PubMed]
- de Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2021, 2, 70–84. [Google Scholar] [CrossRef]
- Cooke, B.C.; Morton, J.K.; Baldry, A.; Bishop, M.J. Backshore nourishment of a beach degraded by off-road vehicles: Ecological impacts and benefits. Sci. Total Environ. 2020, 724, 138115. [Google Scholar] [CrossRef]
- Fontán-Bouzas, Á.; Andriolo, U.; Silva, P.A.; Baptista, P. Wave Impact Analysis on a Beach-Dune System to Support Coastal Management and Nourishment Works: The Showcase of Mira, Portugal. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Hanley, M.E.; Hoggart, S.P.G.; Simmonds, D.J.; Bichot, A.; Colangelo, M.A.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M.; et al. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng. 2014, 87, 136–146. [Google Scholar] [CrossRef]
- Kroon, A.; de Schipper, M.; de Vries, S.; Aarninkhof, S. Subaqueous and Subaerial Beach Changes after Implementation of a Mega Nourishment in Front of a Sea Dike. J. Mar. Sci. Eng. 2022, 10, 1152. [Google Scholar] [CrossRef]
- Martin, K.L.M.; Adams, L.C. Effects of repeated sand replenishment projects on runs of a beach-spawning fish, the California grunion. J. Mar. Sci. Eng. 2020, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Passeri, D.L.; Bilskie, M.V.; Hagen, S.C.; Mickey, R.C.; Dalyander, P.S. Assessing the effectiveness of nourishment in decadal barrier island morphological resilience. Water 2021, 13, 944. [Google Scholar] [CrossRef]
- Peterson, C.H.; Hickerson, D.H.M.; Johnson, G.G. Short-term consequences of nourishment and bulldozing on the dominant large invertebrates of a sandy beach. J. Coast. Res. 2000, 16, 368–378. [Google Scholar]
- Speybroeck, J.; Bonte, D.; Courtens, W.; Gheskiere, T.; Grootaert, P.; Maelfait, J.P.; Mathys, M.; Provoost, S.; Sabbe, K.; Stienen, E.W.M.; et al. Beach nourishment: An ecologically sound coastal defence alternative? A review. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 419–435. [Google Scholar] [CrossRef]
- Gilby, B.L.; Olds, A.D.; Hardcastle, F.E.; Henderson, C.J.; Connolly, R.M.; Martin, T.S.H.; Jones, T.R.; Maxwell, P.S.; Schlacher, T.A. Urbanisation and fishing alter the body size and functional traits of a key fisheries species. Estuaries Coasts 2020, 43, 2170–2181. [Google Scholar] [CrossRef]
- Vargas-Fonseca, E.; Olds, A.D.; Gilby, B.L.; Connolly, R.M.; Schoeman, D.S.; Huijbers, C.M.; Hyndes, G.A.; Schlacher, T.A. Combined effects of urbanization and connectivity on iconic coastal fishes. Divers. Distrib. 2016, 22, 1328–1341. [Google Scholar] [CrossRef]
- Engelhard, S.L.; Huijbers, C.M.; Stewart-Koster, B.; Olds, A.D.; Schlacher, T.A.; Connolly, R.M. Prioritising seascape connectivity in conservation using network analysis. J. Appl. Ecol. 2017, 54, 1130–1141. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.S.H.; Connolly, R.M.; Olds, A.D.; Ceccarelli, D.M.; Fenner, D.E.; Schlacher, T.A.; Beger, M. Subsistence harvesting by a small community does not substantially compromise coral reef fish assemblages. ICES J. Mar. Sci. 2017, 74, 2191–2200. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.S.H.; Olds, A.D.; Olalde, A.B.H.; Berkström, C.; Gilby, B.L.; Schlacher, T.A.; Butler, I.R.; Yabsley, N.A.; Zann, M.; Connolly, R.M. Habitat proximity exerts opposing effects on key ecological functions. Landsc. Ecol. 2018, 33, 1273–1286. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.K.; Gilby, B.L.; Olds, A.D.; Connolly, R.M.; Ortodossi, N.L.; Henderson, C.J.; Schlacher, T.A. Landscape context modifies the rate and distribution of predation around habitat restoration sites. Biol. Conserv. 2019, 237, 97–104. [Google Scholar] [CrossRef]
- Gilby, B.L.; Olds, A.D.; Henderson, C.J.; Ortodossi, N.L.; Connolly, R.M.; Schlacher, T.A. Seascape context modifies how fish respond to restored oyster reef structures. ICES J. Mar. Sci. 2019, 76, 1131–1139. [Google Scholar] [CrossRef]
- Ortodossi, N.L.; Gilby, B.L.; Schlacher, T.A.; Connolly, R.M.; Yabsley, N.A.; Henderson, C.J.; Olds, A.D. Effects of seascape connectivity on reserve performance along exposed coastlines. Conserv. Biol. 2019, 33, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Yabsley, N.A.; Gilby, B.L.; Schlacher, T.A.; Henderson, C.J.; Connolly, R.M.; Maxwell, P.S.; Olds, A.D. Landscape context and nutrients modify the effects of coastal urbanisation. Mar. Environ. Res. 2020, 158, e104936. [Google Scholar] [CrossRef]
- Llompart, F.M.; Colautti, D.C.; Baign, C.R.M. Assessment of a major shore-based marine recreational fishery in the southwest Atlantic, Argentina. N. Z. J. Mar. Freshw. Res. 2012, 46, 57–70. [Google Scholar] [CrossRef]
- Murray-Jones, S.; Steffe, A.S. A comparison between the commercial and recreational fisheries of the surf clam, Donax deltoides. Fish. Res. 2000, 44, 219–233. [Google Scholar] [CrossRef]
- Ortega, L.; Castilla, J.C.; Espino, M.; Yamashiro, C.; Defeo, O. Effects of fishing, market price, and climate on two South American clam species. Mar. Ecol. Prog. Ser. 2012, 469, 71–85. [Google Scholar] [CrossRef]
- McLachlan, A.; Dugan, J.E.; Defeo, O.; Ansell, A.D.; Hubbard, D.M.; Jaramillo, E.; Penchaszadeh, P.E. Beach clam fisheries. Oceanogr. Mar. Biol. Annu. Rev. 1996, 34, 163–232. [Google Scholar]
- Schlacher, T.A.; Thompson, L. Exposure of fauna to off-road vehicle (ORV) traffic on sandy beaches. Coast. Manag. 2007, 35, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Thompson, L.; Price, S. Vehicles versus conservation of invertebrates on sandy beaches: Quantifying direct mortalities inflicted by off-road vehicles (ORVs) on ghost crabs. Mar. Ecol. 2007, 28, 354–367. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Morrison, J.M. Beach disturbance caused by off-road vehicles (ORVs) on sandy shores: Relationship with traffic volumes and a new method to quantify impacts using image-based data acquisition and analysis. Mar. Pollut. Bull. 2008, 56, 1646–1649. [Google Scholar] [CrossRef] [PubMed]
- Schlacher, T.A.; Richardson, D.; McLean, I. Impacts of off-road vehicles (ORVs) on macrobenthic assemblages on sandy beaches. Environ. Manag. 2008, 41, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Schlacher, T.A.; Thompson, L. Physical impacts caused by off-road vehicles (ORVs) to sandy beaches: Spatial quantification of car tracks on an Australian barrier island. J. Coast. Res. 2008, 224, 234–242. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Thompson, L.; Walker, S.J. Mortalities caused by off-road vehicles (ORVs) to a key member of sandy beach assemblages, the surf clam Donax deltoides. Hydrobiologia 2008, 610, 345–350. [Google Scholar] [CrossRef]
- Sheppard, N.; Pitt, K.A.; Schlacher, T.A. Sub-lethal effects of off-road vehicles (ORVs) on surf clams on sandy beaches. J. Exp. Mar. Biol. Ecol. 2009, 380, 113–118. [Google Scholar] [CrossRef]
- Lucrezi, S.; Schlacher, T.A. Impacts of off-road vehicles (ORVs) on burrow architecture of Ghost Crabs (Genus Ocypode) on sandy beaches. Environ. Manag. 2010, 45, 1352–1362. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Lucrezi, S. Compression of home ranges in ghost crabs on sandy beaches impacted by vehicle traffic. Mar. Biol. 2010, 157, 2467–2474. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Lucrezi, S. Experimental evidence that vehicle traffic changes burrow architecture and reduces population density of ghost crabs on sandy beaches. Vie Milieu 2010, 60, 313–320. [Google Scholar]
- Walker, S.J.; Schlacher, T.A. Impact of a pulse human disturbance experiment on macrofaunal assemblages on an Australian sandy beach. J. Coast. Res. 2011, 27, 184–192. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Nielsen, T.; Weston, M.A. Human recreation alters behaviour profiles of non-breeding birds on open-coast sandy shores. Estuar. Coast. Shelf Sci. 2013, 118, 31–42. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Weston, M.A.; Lynn, D.D.; Connolly, R.M. Setback distances as a conservation tool in wildlife-human interactions: Testing their efficacy for birds affected by vehicles on open-coast sandy beaches. PLoS ONE 2013, 8, e71200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston, M.A.; Schlacher, T.A.; Lynn, D. Pro-environmental beach driving is uncommon and ineffective in reducing disturbance to beach-dwelling birds. Environ. Manag. 2014, 53, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Petch, N.; Maguire, G.S.; Schlacher, T.A.; Weston, M.A. Motivations and behavior of off-road drivers on sandy beaches. Ocean Coast. Manag. 2018, 163, 82–91. [Google Scholar] [CrossRef]
- Davies, R.; Speldewinde, P.C.; Stewart, B.A. Low level off-road vehicle (ORV) traffic negatively impacts macroinvertebrate assemblages at sandy beaches in south-Western Australia. Sci. Rep. 2016, 6, 24899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucrezi, S.; Saayman, M.; Van Der Merwe, P. Impact of off-road vehicles (ORVs) on ghost crabs of sandy beaches with traffic restrictions: A case study of Sodwana Bay, South Africa. Environ. Manag. 2014, 53, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.J.; Kerley, G.I.H.; McLachlan, A. Human activity and potential impacts on dune breeding birds in the Alexandria Coastal Dunefield. Landsc. Urban Plann. 1996, 34, 315–322. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Hutton, B.M.; Gilby, B.L.; Porch, N.; Maguire, G.S.; Maslo, B.; Connolly, R.M.; Olds, A.D.; Weston, M.A. Algal subsidies enhance invertebrate prey for threatened shorebirds: A novel conservation tool on ocean beaches? Estuar. Coast. Shelf Sci. 2017, 191, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Dugan, J.E.; Hubbard, D.M. Loss of coastal strand habitat in Southern California: The role of beach grooming. Estuar. Coasts 2010, 33, 67–77. [Google Scholar] [CrossRef]
- Dugan, J.E.; Hubbard, D.M.; McCrary, M.D.; Pierson, M.O. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar. Coast. Shelf Sci. 2003, 58, 25–40. [Google Scholar] [CrossRef]
- Gilburn, A.S. Mechanical grooming and beach award status are associated with low strandline biodiversity in Scotland. Estuar. Coast. Shelf Sci. 2012, 107, 81–88. [Google Scholar] [CrossRef]
- Schooler, N.K.; Dugan, J.E.; Hubbard, D.M.; Straughan, D. Local scale processes drive long-term change in biodiversity of sandy beach ecosystems. Ecol. Evol. 2017, 7, 4822–4834. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, S.; Botero, C.M.; Yanes, A. To clean or not to clean? A critical review of beach cleaning methods and impacts. Mar. Pollut. Bull. 2019, 139, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.; Schlacher, T.A. Physical damage to coastal foredunes and ecological impacts caused by vehicle tracks associated with beach camping on sandy shores: A case study from Fraser Island, Australia. J. Coast. Conserv. 2008, 12, 67–82. [Google Scholar] [CrossRef]
- Lucrezi, S.; Schlacher, T.A.; Robinson, W. Human disturbance as a cause of bias in ecological indicators for sandy beaches: Experimental evidence for the effects of human trampling on ghost crabs (Ocypode spp.). Ecol. Indic. 2009, 9, 913–921. [Google Scholar] [CrossRef]
- Lucrezi, S.; Schlacher, T.A.; Walker, S.J. Monitoring human impacts on sandy shore ecosystems: A test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environ. Monit. Assess. 2009, 152, 413–424. [Google Scholar] [CrossRef]
- Schlacher, T.A.; de Jager, R.; Nielsen, T. Vegetation and ghost crabs in coastal dunes as indicators of putative stressors from tourism. Ecol. Indic. 2011, 11, 284–294. [Google Scholar] [CrossRef]
- Kelly, I.; Leon, J.X.; Gilby, B.L.; Olds, A.D.; Schlacher, T.A. Marine turtles are not fussy nesters: A novel test of small-scale nest site selection using structure from motion beach terrain information. PeerJ 2017, 5, e2770. [Google Scholar] [CrossRef]
- Ciccarelli, D. Mediterranean coastal sand dune vegetation: Influence of natural and anthropogenic factors. Environ. Manag. 2014, 54, 194–204. [Google Scholar] [CrossRef]
- Evans-Clay, M.; Porch, N.; Maguire, G.; Weston, M.A. Hooves on the Beach; Horses Disrupt the Sand Matrix and Might Alter Invertebrate Assemblages on Beaches. Environ. Manag. 2021, 67, 398–411. [Google Scholar] [CrossRef]
- Santoro, R.; Jucker, T.; Prisco, I.; Carboni, M.; Battisti, C.; Acosta, A.T.R. Effects of trampling limitation on coastal dune plant communities. Environ. Manag. 2012, 49, 534–542. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Carracher, L.K.; Porch, N.; Connolly, R.M.; Olds, A.D.; Gilby, B.L.; Ekanayake, K.B.; Maslo, B.; Weston, M.A. The early shorebird will catch fewer invertebrates on trampled sandy beaches. PLoS ONE 2016, 11, e0161905. [Google Scholar] [CrossRef] [PubMed]
- Seer, F.K.; Irmler, U.; Schrautzer, J. Beaches under pressure—Effects of human access on vegetation at Baltic Sea beaches. Appl. Veg. Sci. 2016, 19, 225–234. [Google Scholar] [CrossRef]
- Gorman, D.; Turra, A.; Connolly, R.M.; Olds, A.D.; Schlacher, T.A. Monitoring nitrogen pollution in seasonally-pulsed coastal waters requires judicious choice of indicator species. Mar. Pollut. Bull. 2017, 122, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenlinger, M.A.; Schlacher, T.A. Differential accumulation patterns of heavy metals among the dominant macrophytes of a Mediterranean seagrass meadow. Chemosphere 1998, 37, 1511–1519. [Google Scholar] [CrossRef]
- Hoenlinger, M.A.; Schlacher, T.A. Accumulation, contamination, and seasonal variability of trace metals in the coastal zone—Patterns in a seagrass meadow from the Mediterranean. Mar. Biol. 1998, 131, 401–410. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Liddell, B.; Gaston, T.F.; Schlacher-Hoenlinger, M. Fish track wastewater pollution to estuaries. Oecologia 2005, 144, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Mill, A.; Schlacher, T.A.; Katouli, M. Tidal and longitudinal variation of faecal indicator bacteria in an estuarine creek in south-east Queensland, Australia. Mar. Pollut. Bull. 2006, 52, 881–891. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Mondon, J.A.; Connolly, R.M. Estuarine fish health assessment: Evidence of wastewater impacts based on nitrogen isotopes and histopathology. Mar. Pollut. Bull. 2007, 54, 1762–1776. [Google Scholar] [CrossRef]
- Reopanichkul, P.; Schlacher, T.A.; Carter, R.W.; Worachananant, S. Sewage impacts coral reefs at multiple levels of ecological organization. Mar. Pollut. Bull. 2009, 58, 1356–1362. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Holzheimer, A.; Stevens, T.; Rissik, D. Impacts of the ‘Pacific Adventurer’ oil spill on the macrobenthos of subtropical sandy beaches. Estuaries Coasts 2011, 34, 937–949. [Google Scholar] [CrossRef]
- Stevens, T.; Boden, A.; Arthur, J.M.; Schlacher, T.A.; Rissik, D.; Atkinson, S. Initial effects of a moderate-sized oil spill on benthic assemblage structure of a subtropical rocky shore. Estuar. Coast. Shelf Sci. 2012, 109, 107–115. [Google Scholar] [CrossRef]
- Gorman, D.; Pucci, M.; Soares, L.S.H.; Turra, A.; Schlacher, T.A. Land–ocean connectivity through subsidies of terrestrially derived organic matter to a nearshore marine consumer. Ecosystems 2019, 22, 796–804. [Google Scholar] [CrossRef]
- Dugan, J.; Defeo, O.; Jaramillo, E.; Jones, A.; Lastra, M.; Nel, R.; Peterson, C.H.; Scapini, F.; Schlacher, T.A.; Schoeman, D. Give beach ecosystems their day in the sun. Science 2010, 329, 1146. [Google Scholar] [CrossRef] [PubMed]
- Meager, J.J.; Schlacher, T.A.; Nielsen, T. Humans alter habitat selection of birds on ocean-exposed sandy beaches. Divers. Distrib. 2012, 18, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Noriega, R.; Schlacher, T.A.; Smeuninx, B. Reductions in ghost crab populations reflect urbanization of beaches and dunes. J. Coast. Res. 2012, 28, 123–131. [Google Scholar] [CrossRef]
- Huijbers, C.M.; Schlacher, T.A.; Schoeman, D.S.; Weston, M.A.; Connolly, R.M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 2013, 119, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Thompson, L. Environmental control of community organisation on ocean-exposed sandy beaches. Mar. Freshw. Res. 2013, 64, 119–129. [Google Scholar] [CrossRef]
- Nel, R.; Campbell, E.E.; Harris, L.; Hauser, L.; Schoeman, D.S.; McLachlan, A.; du Preez, D.R.; Bezuidenhout, K.; Schlacher, T.A. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 2014, 150, 1–10. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Meager, J.J.; Nielsen, T. Habitat selection in birds feeding on ocean shores: Landscape effects are important in the choice of foraging sites by oystercatchers. Mar. Ecol. 2014, 35, 67–76. [Google Scholar] [CrossRef]
- Huijbers, C.M.; Connolly, R.M.; Pitt, K.A.; Schoeman, D.S.; Schlacher, T.A.; Burfeind, D.D.; Steele, C.; Olds, A.D.; Maxwell, P.S.; Babcock, R.C.; et al. Conservation benefits of marine reserves are undiminished near coastal rivers and cities. Conserv. Lett. 2015, 8, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, C.M.; Schlacher, T.A.; Schoeman, D.S.; Olds, A.D.; Weston, M.A.; Connolly, R.M. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 2015, 21, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Weston, M.A.; Schoeman, D.S.; Olds, A.D.; Huijbers, C.M.; Connolly, R.M. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 2015, 157, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schoeman, D.S.; Schlacher, T.A.; Jones, A.R.; Murray, A.; Huijbers, C.M.; Olds, A.D.; Connolly, R.M. Edging along a warming coast: A range extension for a common sandy beach crab. PLoS ONE 2015, 10, e0141976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivian, E.V.C.; Schlacher, T.A. Intrinsic and utilitarian valuing on K’gari-Fraser Island: A philosophical exploration of the modern disjunction between ecological and cultural valuing. Australas. J. Environ. Manag. 2015, 22, 149–162. [Google Scholar] [CrossRef]
- Wardell-Johnson, G.; Schoeman, D.; Schlacher, T.; Wardell-Johnson, A.; Weston, M.A.; Shimizu, Y.; Conroy, G. Re-framing values for a World Heritage future: What type of icon will K’gari-Fraser Island become? Australas. J. Environ. Manag. 2015, 22, 124–148. [Google Scholar] [CrossRef]
- Maslo, B.; Leu, K.; Faillace, C.; Weston, M.A.; Pover, T.; Schlacher, T.A. Selecting umbrella species for conservation: A test of habitat models and niche overlap for beach-nesting birds. Biol. Conserv. 2016, 203, 233–242. [Google Scholar] [CrossRef]
- Maslo, B.; Schlacher, T.A.; Weston, M.A.; Huijbers, C.M.; Anderson, C.; Gilby, B.L.; Olds, A.D.; Connolly, R.M.; Schoeman, D.S. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ 2016, 4, e2460. [Google Scholar] [CrossRef] [Green Version]
- Schlacher, T.A.; Lucrezi, S.; Peterson, C.H.; Connolly, R.M.; Olds, A.D.; Althaus, F.; Hyndes, G.A.; Maslo, B.; Gilby, B.L.; Leon, J.X.; et al. Estimating animal populations and body sizes from burrows: Marine ecologists have their heads buried in the sand. J. Sea Res. 2016, 112, 55–64. [Google Scholar] [CrossRef]
- Jones, A.R.; Schlacher, T.A.; Schoeman, D.S.; Weston, M.A.; Withycombe, G.M. Ecological research questions to inform policy and the management of sandy beaches. Ocean Coast. Manag. 2017, 148, 158–163. [Google Scholar] [CrossRef]
- Olds, A.D.; Frohloff, B.A.; Gilby, B.L.; Connolly, R.M.; Yabsley, N.A.; Maxwell, P.S.; Henderson, C.J.; Schlacher, T.A. Urbanisation supplements ecosystem functioning in disturbed estuaries. Ecography 2018, 41, 2104–2113. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.M.; Jinks, K.I.; Brown, C.J.; Schlacher, T.A.; Connolly, R.M. Functional changes in reef systems in warmer seas: Asymmetrical effects of altered grazing by a widespread crustacean mesograzer. Sci. Total Environ. 2018, 644, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Maslo, B.; Leu, K.; Pover, T.; Weston, M.A.; Gilby, B.L.; Schlacher, T.A. Optimizing conservation benefits for threatened beach fauna following severe natural disturbances. Sci. Total Environ. 2019, 649, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Gilby, B.L.; Olds, A.D.; Hardcastle, F.E.; Henderson, C.J.; Connolly, R.M.; Martin, T.S.H.; Maxwell, P.S.; Goodridge Gaines, L.A.; Jones, T.R.; Underwood, A.; et al. Diverse land uses and high coastal urbanisation do not always result in harmful environmental pollutants in fisheries species. Mar. Pollut. Bull. 2020, 159, e111487. [Google Scholar] [CrossRef]
- Gilby, B.L.; Olds, A.D.; Brown, C.J.; Connolly, R.M.; Henderson, C.J.; Maxwell, P.S.; Schlacher, T.A. Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restor. Ecol. 2021, 29, e13403. [Google Scholar] [CrossRef]
- Brown, M.B.; Schlacher, T.A.; Schoeman, D.S.; Weston, M.A.; Huijbers, C.M.; Olds, A.D.; Connolly, R.M. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches. Ecology 2015, 96, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- Bingham, E.L.; Gilby, B.L.; Olds, A.D.; Weston, M.A.; Connolly, R.M.; Henderson, C.J.; Maslo, B.; Peterson, C.F.; Voss, C.M.; Schlacher, T.A. Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia 2018, 188, 583–593. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Gilby, B.L.; Olds, A.D.; Henderson, C.J.; Connolly, R.M.; Peterson, C.H.; Voss, C.M.; Maslo, B.; Weston, M.A.; Bishop, M.J.; et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 2020, 23, 906–916. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Weston, M.A.; Lynn, D.; Schoeman, D.S.; Huijbers, C.M.; Olds, A.D.; Masters, S.; Connolly, R.M. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 2015, 24, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Maslo, B.; Leu, K.; Pover, T.; Weston, M.A.; Schlacher, T.A. Managing birds of conservation concern on sandy shores: How much room for future conservation actions is there? Ecol. Evol. 2018, 8, 10976–10988. [Google Scholar] [CrossRef]
- Araújo, M.C.B.; Costa, M.F. A critical review of the issue of cigarette butt pollution in coastal environments. Environ. Res. 2019, 172, 137–149. [Google Scholar] [CrossRef]
- Besseling, E.; Redondo-Hasselerharm, P.; Foekema, E.M.; Koelmans, A.A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 2019, 49, 32–80. [Google Scholar] [CrossRef] [Green Version]
- De-la-Torre, G.E.; Rakib, M.R.J.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C. Occurrence of personal protective equipment (PPE) associated with the COVID-19 pandemic along the coast of Lima, Peru. Sci. Total Environ. 2021, 774, 145774. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.T. The fate of microplastic in marine sedimentary environments: A review and synthesis. Mar. Pollut. Bull. 2020, 158, 111398. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.S.; Guézou, A.; Medor, S.; Nickson, C.; Savage, G.; Alarcón-Ruales, D.; Galloway, T.S.; Muñoz-Pérez, J.P.; Nelms, S.E.; Porter, A.; et al. Microplastic distribution and composition on two Galápagos island beaches, Ecuador: Verifying the use of citizen science derived data in long-term monitoring. Environ. Pollut. 2022, 311, 120011. [Google Scholar] [CrossRef]
- Kim, I.S.; Chae, D.H.; Kim, S.K.; Choi, S.; Woo, S.B. Factors Influencing the Spatial Variation of Microplastics on High-Tidal Coastal Beaches in Korea. Arch. Environ. Contam. Toxicol. 2021, 69, 299–309. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Boukris, E.; van Harmelen, T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Mar. Pollut. Bull. 2019, 143, 92–100. [Google Scholar] [CrossRef]
- Tiwari, M.; Rathod, T.D.; Ajmal, P.Y.; Bhangare, R.C.; Sahu, S.K. Distribution and characterization of microplastics in beach sand from three different Indian coastal environments. Mar. Pollut. Bull. 2019, 140, 262–273. [Google Scholar] [CrossRef]
- Ward, R.M.; Casper, E.M.; Clark, J.A.; Botton, M.L. Microplastic transfer from the American horseshoe crab to shorebirds through consumption of horseshoe crab eggs in Jamaica Bay, NY. Mar. Pollut. Bull. 2022, 184, 114148. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Lloyd, S.; Wiegand, A. Use of local ecological knowledge in the management of algal blooms. Environ. Conserv. 2010, 37, 210–221. [Google Scholar] [CrossRef]
- Lavers, J.L.; Bond, A.L. Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proc. Natl. Acad. Sci. USA 2017, 114, 6052–6055. [Google Scholar] [CrossRef] [Green Version]
- Bates, A.E.; Primack, R.B.; Biggar, B.S.; Bird, T.J.; Clinton, M.E.; Command, R.J.; Richards, C.; Shellard, M.; Geraldi, N.R.; Vergara, V.; et al. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 2021, 263, e109175. [Google Scholar] [CrossRef] [PubMed]
- Gilby, B.L.; Henderson, C.J.; Olds, A.D.; Ballantyne, J.A.; Bingham, E.L.; Elliott, B.B.; Jones, T.R.; Kimber, O.; Mosman, J.D.; Schlacher, T.A. Potentially negative ecological consequences of animal redistribution on beaches during COVID-19 lockdown. Biol. Conserv. 2021, 253, e108926. [Google Scholar] [CrossRef]
- Whalen, M.A.; Whippo, R.D.B.; Stachowicz, J.J.; York, P.H.; Aiello, E.; Alcoverro, T.; Altieri, A.H.; Benedetti-Cecchi, L.; Bertolini, C.; Bresch, M.; et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl. Acad. Sci. USA 2020, 117, 28160–28166. [Google Scholar] [CrossRef] [PubMed]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 2019, 9, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef]
- Jinks, K.I.; Brown, C.J.; Schlacher, T.A.; Olds, A.D.; Engelhard, S.L.; Pearson, R.M.; Connolly, R.M. Being well-connected pays in a disturbed world: Enhanced herbivory in better-linked habitats. Diversity 2020, 12, 424. [Google Scholar] [CrossRef]
- Pearson, R.M.; Schlacher, T.A.; Jinks, K.I.; Olds, A.D.; Brown, C.J.; Connolly, R.M. Disturbance type determines how connectivity shapes ecosystem resilience. Sci. Rep. 2021, 11, 1188. [Google Scholar] [CrossRef]
- Masselink, G.; Lazarus, E.D. Defining Coastal Resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.A. Whither the shoreline ( coastal management)? Science 1981, 214, 428. [Google Scholar] [CrossRef]
- Slinger, J.; Stive, M.; Luijendijk, A. Nature-based solutions for coastal engineering andmanagement. Water 2021, 13, 976. [Google Scholar] [CrossRef]
- Castelle, B.; Laporte-Fauret, Q.; Marieu, V.; Michalet, R.; Rosebery, D.; Bujan, S.; Lubac, B.; Bernard, J.-B.; Valance, A.; Dupont, P.; et al. Nature-Based Solution along High-Energy Eroding Sandy Coasts: Preliminary Tests on the Reinstatement of Natural Dynamics in Reprofiled Coastal Dunes. Water 2019, 11, 2518. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, J. How to clean a beach. Nature 2003, 422, 464–466. [Google Scholar] [CrossRef] [PubMed]
- National beaches. Science 1930, 72, xii–xiv.
Year | Location | Main Observations | Reference |
---|---|---|---|
1882 | England (Hampshire Coast)t | - Cliff erosion - ‘The degradation of the cliffs to the westward has been very great, and they are much serrated and water-worn, with frequent slips in the upper strata of sand and gravel on a clay base, and in the neighbourhood of Hordle huge masses of fallen cliff alternate with hollow chines. - ‘At Barton also the loss is great, averaging over certain periods one yard per annum, and the whole frontage of Christchurch Bay is similarly affected’. | [79] |
1892 | England (Devonshire Coast) | - Episodic (pulsed) nature of beach erosion, alternating between losses during storms and gradual rebuilding during calms. “Sea-waves, tidal-currents, and river-currents can be observed, and their effects recorded, but it is the occasional, irregular, and sometimes powerful wind-raised current, prevalent during storms, which performs such erratic feats, and deludes the unwary observer. For instance, a beach may resist the sea for years, yet in a few hours it may he stripped bare to the solid rock”. | [80] |
1899 | Netherlands | - Decadal (1846 to 1894) record of landward movement of the shoreline at a rate of ~1 m a year. - ‘As a general result, the measurements show that during the last half-century, on the Dutch coast, the sea has been encroaching on the coast. The low water line has crept landward, and the beach has become more steep. There has also been a wasting away of the foot of the sand dunes’. | [81] |
1983 | Australia (New South Wales) | - Long term (1895–1980) record of shoreline position in response to climatic variability at the scale of ocean basins. - average high-tide wave run-up position measured accurate to ±2.5 m from oblique and vertical photographs, changes could be linked to regional sea-level variation and a globally significant climatic variable, the Southern Oscillation (SO). | [82] |
1997 | USA (Hawaii) | - Shoreline armouring can result in increased rates of beach loss if hard coastal defence structures concentrate wave energy and/or block sand movement from dunes to the beach. - “The authors identify coastal armouring structures, built to protect shoreline properties from erosion, as the culprits. The trouble is that armouring concentrates erosional forces on the beach directly in front, which, moreover, also loses the replenishment of sand stores from those locked into shoreline land”. | [83] |
2016 | England (East Sussex) | - Millennial records of cliff erosion and beach width. - Beaches fronting cliffs shield cliffs from storm-induced erosion. -‘…retreat rates of chalk cliffs that were relatively slow (2–6 cm·y−1) until a few hundred years ago. Historical observations reveal that retreat rates have subsequently accelerated by an order of magnitude (22–32 cm·y−1)’. - ‘We suggest that acceleration is the result of thinning of cliff-front beaches, exacerbated by regional storminess and anthropogenic modification of the coast’. | [84] |
2018 | Global | - Decadal (1984–2016) record of shoreline change for sandy beaches worldwide. - 24% of the world′s sandy beaches persistently eroding at a rate exceeding 0.5 m year−1. - 16% of sandy beaches are experiencing erosion rates exceeding 1 m year−1. - 37% of protected sandy shorelines are eroding at a rate larger than 0.5 m year−1. | [8] |
2020 | Global | - ‘13.6–15.2% (36,097–40,511 km) of the world′s sandy beaches could face severe erosion by 2050, a number rising to 35.7–49.5% (95,061–131,745 km) by the end of the century’. - ‘By 2100 Australia is predicted to potentially experience severe erosion along 11,426 km of sandy beach coastline′. ‘Ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world′s sandy beaches by the end of the century’. ‘A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures’. | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlacher, T.A.; Maslo, B.; de Schipper, M.A. Global Coasts: A Baroque Embarrassment of Riches. Coasts 2022, 2, 278-301. https://doi.org/10.3390/coasts2040014
Schlacher TA, Maslo B, de Schipper MA. Global Coasts: A Baroque Embarrassment of Riches. Coasts. 2022; 2(4):278-301. https://doi.org/10.3390/coasts2040014
Chicago/Turabian StyleSchlacher, Thomas A., Brooke Maslo, and Matthieu A. de Schipper. 2022. "Global Coasts: A Baroque Embarrassment of Riches" Coasts 2, no. 4: 278-301. https://doi.org/10.3390/coasts2040014
APA StyleSchlacher, T. A., Maslo, B., & de Schipper, M. A. (2022). Global Coasts: A Baroque Embarrassment of Riches. Coasts, 2(4), 278-301. https://doi.org/10.3390/coasts2040014