-
Modeling of the 2007 Aysén Tsunami Generated by the Punta Cola and North Mentirosa Island Landslides
-
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
-
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
Journal Description
Coasts
Coasts
is an international, peer-reviewed, open access journal on coastal engineering, management, conservation, biology and ecology, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, GeoRef, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 31.2 days after submission; acceptance to publication is undertaken in 9.2 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Clusters of Water Resources: Water, Journal of Marine Science and Engineering, Hydrology, Resources, Oceans, Limnological Review, Coasts.
Latest Articles
Changes in Eelgrass (Zostera marina) in the Little Narragansett Bay Estuary Between 2019 and 2022
Coasts 2025, 5(3), 35; https://doi.org/10.3390/coasts5030035 (registering DOI) - 14 Sep 2025
Abstract
►
Show Figures
Eelgrass (Zostera marina) is a native perennial marine angiosperm found in shallow bays and estuaries. Eelgrass beds are considered essential fish habitats and provide an important food source for marine organisms and waterfowl. This study examines changes in extent of the
[...] Read more.
Eelgrass (Zostera marina) is a native perennial marine angiosperm found in shallow bays and estuaries. Eelgrass beds are considered essential fish habitats and provide an important food source for marine organisms and waterfowl. This study examines changes in extent of the eelgrass beds in the southern portion of the Little Narragansett Bay Estuary, Rhode Island/Connecticut, USA, between 2019 and 2022. The primary dataset used to delineate eelgrass beds was side-scan sonar coupled with underwater video imagery. Previous studies showed a decline in the extent of eelgrass here between 2012 and 2016. Our results show an increase in eelgrass coverage from 0.52 km2 in 2019 to 0.75 km2 in 2022. This increase in the extent of eelgrass occurred against the trends of declining eelgrass coverage both globally and regionally.
Full article
Open AccessArticle
Fine-Scale Patterns in Bacterial Communities on a Gulf Coast Beach
by
Elizabeth Basha, Stephanie N. Vaughn, Jacqueline C. Pavlovsky, Hays Roth and Colin R. Jackson
Coasts 2025, 5(3), 34; https://doi.org/10.3390/coasts5030034 - 9 Sep 2025
Abstract
►▼
Show Figures
Despite being low-resource environments, sandy beaches can contain diverse bacterial assemblages. In this study we examined the spatial heterogeneity of bacterial communities in sand on a beach on the Mississippi Gulf Coast, USA. 16S ribosomal RNA gene sequencing was used to characterize bacterial
[...] Read more.
Despite being low-resource environments, sandy beaches can contain diverse bacterial assemblages. In this study we examined the spatial heterogeneity of bacterial communities in sand on a beach on the Mississippi Gulf Coast, USA. 16S ribosomal RNA gene sequencing was used to characterize bacterial communities in surface sand along 10 m transects from dry sand towards the upper beach to fully submerged sand, as well as up to 0.4 m deep into the sand. There were clear gradients in bacterial community structure based on position on the beach and depth, and community richness and diversity was greater in moist sand subject to tidal influence than drier sand. Bacterial communities in sand higher up the beach were characterized by members of the phyla Bacillota and Actinomycetota, whereas there was an increased presence of picocyanobacteria (phylum Cyanobacteriota) in sand closer to the water and greater diversity overall. Along with gradients in community structure, microbial activity also showed spatial patterns, with microbial extracellular enzyme activity being greatest in surface sand at intermediate positions along the beach transects that were subject to tidal influences but not fully submerged. This research supports the idea of beaches containing diverse bacterial communities and demonstrates that the existence of gradients in beach environments means that these communities show clear patterns in their spatial distribution.
Full article

Figure 1
Open AccessArticle
Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia
by
I Gede Agus Novanda, Martiwi Diah Setiawati, I Putu Sugiana, I Gusti Ayu Istri Pradnyandari Dewi, Anak Agung Eka Andiani, Made Wirakumara Kamasan, Putu Echa Priyaning Aryunisha and Abd. Rahman As-syakur
Coasts 2025, 5(3), 33; https://doi.org/10.3390/coasts5030033 - 5 Sep 2025
Abstract
►▼
Show Figures
Remote sensing offers an effective alternative for estimating mangrove carbon stocks by analyzing the relationship between satellite pixel values and field-based carbon measurements. This research was carried out in the mangrove forests of western Bali, Indonesia, encompassing three areas situated in a non-conservation
[...] Read more.
Remote sensing offers an effective alternative for estimating mangrove carbon stocks by analyzing the relationship between satellite pixel values and field-based carbon measurements. This research was carried out in the mangrove forests of western Bali, Indonesia, encompassing three areas situated in a non-conservation mangrove forest area. This study assessed 32 remote sensing vegetation indices derived from Sentinel-2 satellite imagery to identify the optimal model for quantifying the above-ground carbon (Cag) content in mangrove ecosystems. Field data were collected using stratified random sampling and were used to develop regression models linking the Cag with vegetation indices. The Simple Ratio (SR) index exhibited the highest correlation (r = 0.847, R2 = 0.707), while the Three Index Vegetation Above-Ground Carbon (TrIVCag) model, combining the SR, Specific Leaf Area Vegetation Index (SLAVI), and Transformed Ratio Vegetation Index (TRVI) indices, achieved the best performance (r = 0.870, R2 = 0.728). The model validation results confirmed the reliability of the TrIVCag model, as indicated by a correlation of 0.852 between the model estimates and measured Cag values from independent field data. In 2023, the mangrove area in western Bali (excluding West Bali National Park) was estimated at 376.85 ha, with a total above-ground carbon stock of 34,994.55 tonC/ha. Region A had the highest average Cag at 98.97 tonC/ha, followed by Regions B (66.58 tonC/ha) and C (86.98 tonC/ha). This model offers a practical and scalable approach to carbon monitoring and is expected to play a valuable role in supporting blue carbon conservation efforts and contributing to climate change mitigation.
Full article

Figure 1
Open AccessArticle
Measurement and Modelling of Beach Response to Storm Waves: A Case Study of Brandon Bay, Ireland
by
Andi Egon, Eugene Farrell, Gregorio Iglesias and Stephen Nash
Coasts 2025, 5(3), 32; https://doi.org/10.3390/coasts5030032 - 3 Sep 2025
Abstract
►▼
Show Figures
This study analyses the impacts of winter storms on beach response, as well as the subsequent recovery during spring and summer, at a dissipative sandy beach in Brandon Bay, Ireland. Shoreline dynamics were assessed through the integration of field data from five survey
[...] Read more.
This study analyses the impacts of winter storms on beach response, as well as the subsequent recovery during spring and summer, at a dissipative sandy beach in Brandon Bay, Ireland. Shoreline dynamics were assessed through the integration of field data from five survey campaigns conducted between October 2021 and November 2022 with a 1D Xbeach (version 1.23) numerical model. Cross-sectional profiles were measured at seven locations, revealing pronounced erosion during winter, followed by recovery in calmer seasons, especially in the lower beach zone. The model effectively simulated short-term storm-induced morphological changes, demonstrating that rates of shoreline retreat and profile alteration are higher in the eastern bay, where wave energy is greater. Most morphological changes occurred between the low and high astronomical tide marks, characterized by upper beach erosion and lower beach accretion. Models were subsequently employed to examine future climate scenarios, including sea level rise and increased storm intensity. The projections indicated an exponential increase in erosion rates, correlated with higher storm wave heights and frequencies. These results highlight the dynamic response of dissipative beaches to extreme events and reinforce the necessity for adaptive coastal management strategies to address the escalating risks posed by climate change.
Full article

Figure 1
Open AccessArticle
Insights into Ecological Features of Microbial Dark Matter Within the Symbiotic Community During Alexandrium pacificum Bloom: Co-Occurrence Interactions and Assembly Processes
by
Yanlu Qiao, Shuo Wang, Lingzhe Wang, Shijie Li, Feng Wang, Bo Wang and Yuyang Liu
Coasts 2025, 5(3), 31; https://doi.org/10.3390/coasts5030031 - 2 Sep 2025
Abstract
►▼
Show Figures
The symbiotic microbiome constitutes a consortium that has been persistently domesticated by a specific algal species, fostering a close and enduring association with the host. The majority of microbial taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter (MDM)”,
[...] Read more.
The symbiotic microbiome constitutes a consortium that has been persistently domesticated by a specific algal species, fostering a close and enduring association with the host. The majority of microbial taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter (MDM)”, have important ecological contributions. Given the challenges in discerning symbiotic microbes in natural environments, herein, ecological characteristics of MDM and known taxa within symbiotic communities were investigated in a simulated bloom process using Alexandrium pacificum without antibiotic treatment. Specifically, increased diversification was observed in MDM along the bloom process. Higher trophic interaction and less vulnerability of the molecular network were found in MDM taxa. The “bridge” role of MDM species was better than that of known taxa, as shown by higher betweenness centralization. Deterministic processes dominated in MDM taxa, which promote phylogenic diversity of such groups to some extent. The findings highlight that MDM taxa play an important role in sustaining community stability and functioning. This study broadens our understanding of the ecological contribution of MDM under disturbances from dinoflagellate blooms, providing essential theoretical insights and empirical data to inform the management of coastal toxic blooms.
Full article

Figure 1
Open AccessArticle
Aragonite Saturation State as an Indicator for Oyster Habitat Health in the Delaware Inland Bays
by
Tahera Attarwala, Amin Boukari and Gulnihal Ozbay
Coasts 2025, 5(3), 30; https://doi.org/10.3390/coasts5030030 - 19 Aug 2025
Abstract
Bivalves such as oysters rely on aragonite and calcite for shell formation via the biomineralization of calcium carbonate. Ocean acidification reduces carbonate ion availability, compromising shell growth and inducing dissolution under undersaturated conditions ( < 1). This study assessed the aragonite and
[...] Read more.
Bivalves such as oysters rely on aragonite and calcite for shell formation via the biomineralization of calcium carbonate. Ocean acidification reduces carbonate ion availability, compromising shell growth and inducing dissolution under undersaturated conditions ( < 1). This study assessed the aragonite and calcite saturation state ( ) as a proxy for evaluating habitat suitability for oyster aquaculture and restoration. Temperature, salinity, pH, and total alkalinity were monitored across multiple sites and used to calculate the aragonite and calcite saturation state via the Seacarb package. Calcium hardness and dissolved oxygen were also measured to evaluate compliance with hatchery water quality standards. Results indicated temporal and spatial fluctuations in saturation states, with frequent undersaturation during cooler months. Spearman correlation analyses demonstrated significant positive relationships between temperature and salinity (p = 0.46), between pH and aragonite saturation state (p = 0.72), and between alkalinity and aragonite saturation state (p = 0.51). These findings highlight the importance of carbonate chemistry variability and seasonal drivers in determining the suitability of sites for oyster cultivation and restoration under changing environmental conditions.
Full article
(This article belongs to the Special Issue Coastal Hydrology and Climate Change: Challenges and Solutions)
►▼
Show Figures

Figure 1
Open AccessArticle
Hydrodynamic and Climatic Effects on an Amazon Beach Under Unplanned Occupation: A Case Study
by
Remo Luan Marinho da Costa Pereira, Luci Cajueiro Carneiro Pereira and Cesar Mosso
Coasts 2025, 5(3), 29; https://doi.org/10.3390/coasts5030029 - 8 Aug 2025
Abstract
►▼
Show Figures
This study aimed to evaluate how tidal modulation influences breaking waves on a macrotidal beach along the Amazonian coast under varying climatic conditions. The study utilized medium-term data (2006–2018) from national and international institutions and short-term data (2012–2014) from in situ measurements at
[...] Read more.
This study aimed to evaluate how tidal modulation influences breaking waves on a macrotidal beach along the Amazonian coast under varying climatic conditions. The study utilized medium-term data (2006–2018) from national and international institutions and short-term data (2012–2014) from in situ measurements at Ajuruteua Beach. Offshore winds and waves, predominantly from the northeast, were influenced by severe storms associated with La Niña and El Niño events. During these periods, wave heights exceeded 5 m, with wave periods ranging from 12 to 20 s. Tidal fluctuations (typically 5.0–6.0 m) modulated nearshore wave heights and periods, with variations determined by offshore conditions and climatic influences. Wave heights decreased from 2–5 m offshore to 1–2 m nearshore. At low tide, sandbanks dissipated wave energy, resulting in significantly smaller breaking waves (0.1–0.5 m) compared with high tide (1–1.8 m). The northern part of Ajuruteua Beach experienced a progressive retreat, with a total area loss of 0.15 km2 and a shoreline retreat of 0.360 km between 2007 and 2021. The combination of high hydrodynamic energy and unregulated development led to the destruction of 43 buildings between 2007 and 2013 and an additional 44 houses between 2013 and 2021 within the intertidal zone. Moreover, the absence of coastal management strategies has exacerbated erosion, underscoring the urgent need for planning and regulatory frameworks. Based on the findings of this study, it is recommended that land use be regulated and both short- and long-term physical processes be systematically integrated into future coastal protection planning.
Full article

Figure 1
Open AccessArticle
Shoreline Response to Hurricane Otis and Flooding Impact from Hurricane John in Acapulco, Mexico
by
Luis Valderrama-Landeros, Iliana Pérez-Espinosa, Edgar Villeda-Chávez, Rafael Alarcón-Medina and Francisco Flores-de-Santiago
Coasts 2025, 5(3), 28; https://doi.org/10.3390/coasts5030028 - 4 Aug 2025
Abstract
►▼
Show Figures
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23
[...] Read more.
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 September 2024), Hurricane John—a Category 2 storm—caused severe flooding despite its lower intensity, primarily due to its unusual trajectory and prolonged rainfall. Digital shoreline analysis of PlanetScope images (captured one month before and after Hurricane Otis) revealed that the southern coast of Acapulco, specifically Zona Diamante—where the major seafront hotels are located—experienced substantial shoreline erosion (94 ha) and damage. In the northwestern section of the study area, the Coyuca Bar experienced the most dramatic geomorphological change in surface area. This was primarily due to the complete disappearance of the bar on October 26, which resulted in a shoreline retreat of 85 m immediately after the passage of Hurricane Otis. Sentinel-1 Synthetic Aperture Radar (SAR) showed that Hurricane John inundated 2385 ha, four times greater than Hurricane Otis’s flooding (567 ha). The retrofitted QGIS methodology demonstrated high reliability when compared to limited in situ local reports. Given the increased frequency of intense hurricanes, these methods and findings will be relevant in other coastal areas for monitoring and managing local communities affected by severe climate events.
Full article

Figure 1
Open AccessArticle
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by
Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Abstract
►▼
Show Figures
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen,
[...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life.
Full article

Figure 1
Open AccessArticle
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by
Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Abstract
►▼
Show Figures
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura
[...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems.
Full article

Figure 1
Open AccessArticle
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by
Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Abstract
►▼
Show Figures
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport
[...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures.
Full article

Figure 1
Open AccessArticle
Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa)
by
Cheikh Omar Tidjani Cisse
Coasts 2025, 5(3), 24; https://doi.org/10.3390/coasts5030024 - 16 Jul 2025
Abstract
►▼
Show Figures
Today, coastal storms represent one of the most formidable environmental challenges, causing significant impacts on coastal communities. This situation underscores both the importance and urgency of studying storms and their characterization. This study proposes an innovative approach combining Principal Component Analysis (PCA) and
[...] Read more.
Today, coastal storms represent one of the most formidable environmental challenges, causing significant impacts on coastal communities. This situation underscores both the importance and urgency of studying storms and their characterization. This study proposes an innovative approach combining Principal Component Analysis (PCA) and machine learning (Classification and Regression Trees, CART) to characterize and distinguish damaging storms from non-damaging ones along the coast of Dakar, Senegal. The analysis revealed that among several hydrometeorological variables studied (wave height, period, direction, runup, wave energy, sea level anomaly, tide, etc.), the variables SLA and tide play a central role in the occurrence of damage, although they are weakly correlated with the others. By cross-analyzing these variables, critical thresholds were established, such as Tide > 0.53 m combined with SLA ≥ 0.061 m, Tide > 0.53 m and ECWL ≥ 1.3 m, as well as Runup ≤ 0.64 m associated with a high wave period (Tp), allowing accurate differentiation of potentially damaging storms. The CART method validated these results and identified three key combinations: (1) Tide–SLA, where no damage is observed if Tide < 0.53 m, and damage occurs beyond this threshold when SLA ≥ 0.061 m; (2) Tide–ECWL, where storms are damaging if Tide > 0.53 m and ECWL ≥ 1.3 m; (3) Runup–Tp, where storms are damaging if Runup ≤ 0.64 m or if Runup > 0.82 m with Tp ≥ 16 s. These results constitute the first application of machine learning for storm classification on the Senegalese coast, providing a novel quantitative foundation for better understanding the hydrodynamic conditions associated with damaging storms. The findings of this study could be valuable for risk management and the development of early warning systems
Full article

Figure 1
Open AccessArticle
Temporal and Spatial Variability of Hydrogeomorphological Attributes in Coastal Wetlands—Lagoa do Peixe National Park, Brazil
by
Carina Cristiane Korb, Laurindo Antonio Guasselli, Heinrich Hasenack, Tássia Fraga Belloli and Christhian Santana Cunha
Coasts 2025, 5(3), 23; https://doi.org/10.3390/coasts5030023 - 9 Jul 2025
Abstract
►▼
Show Figures
Coastal wetlands play important environmental roles. However, their hydrogeomorphological dynamics remain poorly understood under scenarios of extreme climate events. The aim of this study was to characterize the temporal and spatial variability of hydrogeomorphological attributes (vegetation, water, and soil) in the wetlands of
[...] Read more.
Coastal wetlands play important environmental roles. However, their hydrogeomorphological dynamics remain poorly understood under scenarios of extreme climate events. The aim of this study was to characterize the temporal and spatial variability of hydrogeomorphological attributes (vegetation, water, and soil) in the wetlands of Lagoa do Peixe National Park, Brazil. The methodology involved applying Principal Component Analysis (PCA) in both temporal (T) and spatial (S) modes, decomposing spectral indices for each attribute to identify variability patterns. The results revealed that vegetation and water are strongly correlated with seasonal dynamics influenced by ENSO (El Niño/La Niña) events. Soils reflected their textural characteristics, with a distinct temporal response to the water balance. PCA proved to be a useful tool for synthesizing large volumes of multitemporal data and detecting dominant variability patterns. It highlighted the Lagoon Terraces and the Lagoon Fringe, where low slopes amplified hydrological variations. Temporal variability was more responsive to climate extremes, with implications for ecosystem conservation, while spatial variability was modulated by geomorphology.
Full article

Figure 1
Open AccessArticle
Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary
by
Emanuelle Bezerra Maciel, Maria Luísa de Araújo Albuquerque and André Luiz Machado Pessanha
Coasts 2025, 5(3), 22; https://doi.org/10.3390/coasts5030022 - 3 Jul 2025
Abstract
►▼
Show Figures
Intraspecific variations in the morphological traits of juveniles and adults of the Brazilian silverside, Atherinella brasiliensis, from three estuarine habitats were studied to understanding whether their morphology interacts with their dietary composition and habitat structure. For each individual, fourteen morphological measurements and eight
[...] Read more.
Intraspecific variations in the morphological traits of juveniles and adults of the Brazilian silverside, Atherinella brasiliensis, from three estuarine habitats were studied to understanding whether their morphology interacts with their dietary composition and habitat structure. For each individual, fourteen morphological measurements and eight functional traits were recorded related to food acquisition and locomotion. The highest abundance of A. brasiliensis was recorded in mudflats, which were often associated with a greater number of juveniles. Overall, 392 A. brasiliensis stomachs were examined, and their diet comprised mainly zooplankton organisms, followed by insects and benthic crustaceans. Among the morphological measures, our data revealed that in vegetated habitats (seagrass and riparian vegetation), individuals showed a higher oral gape surface and caudal peduncle and fed predominately on epibiotic or benthic fauna, while for individuals that had bigger eyes in unvegetated habitats (mudflat), this facilitated the ingestion of zooplankton and diatoms. Furthermore, a greater relative body height recorded in unvegetated habitats enhanced swimming performance and was linked to the effects of the lowest habitat structure. The results highlight the significant effects of morphological variation on juvenile and adult food acquisition and swimming ability.
Full article

Figure 1
Open AccessArticle
Population Structure of the Dog Snapper, Lutjanus jocu (Bloch & Schneider, 1801), an Important Fishery Resource in the North of Bahia, Brazil: Influence of Habitat Suitability, Larvae Retention, and Fishing Pressure
by
Glaciane Conceição Marques, Juliana Beltramin De Biasi, Carlos Werner Hackradt and Fabiana Cezar Félix-Hackradt
Coasts 2025, 5(2), 21; https://doi.org/10.3390/coasts5020021 - 16 Jun 2025
Abstract
►▼
Show Figures
The Lutjanidae family includes multiple species highly important to the global fishing industry. In Brazil, approximately 40% of the fishing landings come from a species of this family, the dog snapper, Lutjanus jocu, among the most abundant in the northeast-region fisheries. This
[...] Read more.
The Lutjanidae family includes multiple species highly important to the global fishing industry. In Brazil, approximately 40% of the fishing landings come from a species of this family, the dog snapper, Lutjanus jocu, among the most abundant in the northeast-region fisheries. This study aimed to analyze the genetic diversity and population structure of this species in the states of Bahia and Espírito Santo through the use of microsatellite markers. The dog snapper presented a high genetic variability in the studied populations, with the presence of a distinct population stock in northern Bahia probably driven by habitat suitability, larvae retention, and fishing pressure. The L. jocu sampling sites exhibited an excess of heterozygosity, a low allelic richness, and M-ratio values close to critical levels, probably indicating a recent population decline. Additionally, the low inbreeding indices and high genetic diversity values suggest a significant connectivity and considerably effective population sizes. Although these characteristics may reflect population stability, anthropogenic factors such as habitat loss, fragmentation, and overfishing may pose threats to the sustainability of the species, particularly along the northeastern coast of Brazil.
Full article

Figure 1
Open AccessSystematic Review
Insights on Payment for Environmental Services in Fisheries: A Systematic Review
by
Laura Develey and Leandra Regina Gonçalves
Coasts 2025, 5(2), 20; https://doi.org/10.3390/coasts5020020 - 6 Jun 2025
Abstract
►▼
Show Figures
In the context of the prevailing environmental crisis, one innovative approach with the potential to promote inclusive conservation is payment for environmental services (PES). While numerous studies have documented the efficacy of PES in terrestrial ecosystems, mechanisms tailored to marine ecosystems remain relatively
[...] Read more.
In the context of the prevailing environmental crisis, one innovative approach with the potential to promote inclusive conservation is payment for environmental services (PES). While numerous studies have documented the efficacy of PES in terrestrial ecosystems, mechanisms tailored to marine ecosystems remain relatively unexplored. The objective of this article is to conduct a systematic literature review to identify the essential components of a PES mechanism for fisheries and to map the lessons, challenges, and opportunities associated with it. Three databases were explored: Web of Science, ScienceDirect, and Scopus. Using Boolean operators, we searched for articles containing the following terms in the title, abstract, and/or keywords: “payment for ecosystem services” AND “fish*” and “payment for environmental services” AND “fish*”. Twenty-six articles focusing in depth on PES in the context of fisheries were identified. The results indicate that PES is a tool that can reconcile conservation and social objectives while offering numerous benefits for fisheries management. Nevertheless, it is imperative to meticulously evaluate the circumstances under which PES can meaningfully contribute to the inclusive conservation of marine and coastal ecosystems rather than assuming that it is a universal policy panacea.
Full article

Figure 1
Open AccessArticle
Modeling of the 2007 Aysén Tsunami Generated by the Punta Cola and North Mentirosa Island Landslides
by
Francisco Uribe, Mauricio Fuentes and Jaime Campos
Coasts 2025, 5(2), 19; https://doi.org/10.3390/coasts5020019 - 4 Jun 2025
Abstract
►▼
Show Figures
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the
[...] Read more.
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the Mentirosa Island, the event resulted in 10 fatalities and the destruction of multiple salmon farms along the fjord. We employed the NHWAVE and FUNWAVE-TVD numerical software to conduct a series of simulations using various landslide configurations and two approaches to model landslide motion: a viscous flow and a solid slide governed by Coulomb friction. The numerical results indicate that the solid landslide model without basal friction provides the most accurate representation of the measured in situ run-up heights and generates the largest inundation areas. Furthermore, the simulation results show that the arrival time of the tsunami waves was approximately 600 s. Our findings indicate that the volume of the landslide is the most critical factor in determining tsunami wave heights. Additionally, the Coulomb friction angle is another significant parameter to consider in the modeling process.
Full article

Figure 1
Open AccessArticle
Augmenting Coral Growth on Breakwaters: A Shelter-Based Approach
by
Almog Ben Natan, Natalie Chernihovsky and Nadav Shashar
Coasts 2025, 5(2), 18; https://doi.org/10.3390/coasts5020018 - 28 May 2025
Abstract
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically
[...] Read more.
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically composed of hard units designed to block and divert wave and current energy, often fail to support diverse and abundant marine communities because of their impact on current and sediment transport, the introduction of invasive species, and the loss of natural habitats. Marine ecoengineering aims at increasing CDS ecological services and the development of marine organisms on them. In this study, carried out in a coral reef environment, we examined the relationship between coral colony protection levels and three factors related to their development, namely, coral fragment survival rate, larval settlement, and water motion (flow rate), across three distinct niches: Exposed, Semi-sheltered, and Sheltered. Coral survivability was assessed through fragment planting, while recruitment was monitored using ceramic settlement tiles. Water motion was measured in all defined niches using plaster of Paris Clod-Cards. Additionally, concrete barrier structures were placed in Exposed niches to test whether artificially added protective elements could enhance coral fragment survival. No differences were found in coral settlement between the niches. Flow rate patterns remained similar in Exposed and Sheltered niches due to vortex formation in the Sheltered zones. Survival analysis revealed variability between niches, with the addition of artificial shelter barriers leading to the highest coral fragment survival on the breakwater. This study contributes to the development of ways to enhance coral development with the goal of transforming artificial barriers into functional artificial reefs.
Full article
(This article belongs to the Topic Anthropogenic Impacts in Marine Coastal Waters: Assessment, Case Studies and Solutions)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State
by
Chinomnso C. Onwubiko and Denis Worlanyo Aheto
Coasts 2025, 5(2), 17; https://doi.org/10.3390/coasts5020017 - 27 May 2025
Abstract
►▼
Show Figures
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats
[...] Read more.
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats in protecting coastal communities from flooding using the InVEST coastal vulnerability model (version 3.10.2). The model analyzes various data inputs and assigns relative numbers, ranging from 1 to 5, indicating different levels of exposure. Data on population, bathymetry, shoreline type, land use land cover, and continental shelf were obtained from relevant websites and the InVEST model package. The findings indicate that the mangrove habitats in Rivers State offer minimal protection against coastal flooding due to their degraded state caused by oil spills and over-exploitation. Additionally, sandy beaches provide little to no protection, and the socio-economic conditions in the communities contribute to increased vulnerability to flooding. The study recommends awareness programs to educate the public about the importance of mangroves for coastal protection in addition to their conservation and restoration.
Full article

Figure 1
Open AccessArticle
Acute Impacts of Hurricane Ian on Benthic Habitats, Water Quality, and Microbial Community Composition on the Southwest Florida Shelf
by
Matthew Cole Tillman, Robert Marlin Smith, Trevor R. Tubbs, Adam B. Catasus, Hidetoshi Urakawa, Puspa L. Adhikari and James G. Douglass
Coasts 2025, 5(2), 16; https://doi.org/10.3390/coasts5020016 - 22 May 2025
Abstract
►▼
Show Figures
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight
[...] Read more.
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Animals, Coasts, Diversity, JMSE, Sustainability, Oceans, Earth, Water
Anthropogenic Impacts in Marine Coastal Waters: Assessment, Case Studies and SolutionsTopic Editors: Alberta Mandich, Jessica AlessiDeadline: 30 September 2025
Topic in
Atmosphere, Coasts, Land, Sustainability, Water
Contemporary Waterfronts, What, Why and How?
Topic Editors: Maria José Andrade Marques, Francesca Dal Cin, João Pedro CostaDeadline: 28 February 2026
Topic in
Coasts, Energies, JMSE, Sustainability, Future Transportation
Maritime Transportation in the Blue Economy and Green Shipping Technology
Topic Editors: Chungkuk Jin, Junghwan Choi, Won-Ju Lee, Hokeun KangDeadline: 15 September 2026

Special Issues
Special Issue in
Coasts
Coastal Hydrology and Climate Change: Challenges and Solutions
Guest Editors: Thanh Nhan Duc Tran, Asmita Murumkar, Rosana Nieto Ferreira, Mahesh R. TapasDeadline: 31 December 2025
Special Issue in
Coasts
Remote Sensing and Machine Learning Applications in Coastal Regions
Guest Editor: Andrew FischerDeadline: 31 December 2025