Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasites and Culture
2.2. Mammalian Cell Line Culture
2.3. Antiparasitic Assays
2.3.1. Antikinetoplastid Activity
Assays for Trypanosoma brucei Bloodstream and Leishmania donovani Promastigote Inhibition
Antiamastigote Assay
2.3.2. Antiplasmodial Assay
2.4. Cytotoxicity Assay
2.5. In Silico Prediction of Physicochemical and Pharmacokinetic Properties
2.6. Data Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization (WHO). Malaria. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 15 December 2023).
- The World Health Organization (WHO). World Malaria Report 2022. 2022. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (accessed on 15 December 2023).
- The World Health Organization (WHO). WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. 2021. Available online: https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk (accessed on 18 December 2023).
- The World Health Organization (WHO). First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases. 2010. Available online: https://www.who.int/publications/i/item/9789241564090 (accessed on 20 December 2023).
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000 Res. 2017, 6, 750. [Google Scholar] [CrossRef]
- The World Health Organization (WHO). Leishmaniasis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 21 December 2023).
- Silva-Jardim, I.; Thiemann, O.H.; Anibal, F.F. Leishmaniasis and Chagas disease chemotherapy: A critical review. J. Braz. Chem. Soc. 2014, 25, 1810–1823. [Google Scholar] [CrossRef]
- The World Health Organization (WHO). Trypanosomiasis (Sleeping Sickness). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 21 December 2023).
- Giordani, F.; Morrison, L.J.; Rowan, T.G.; De Koning, H.P.; Barrett, M.P. The animal trypanosomiases and their chemotherapy: A review. Parasitology 2016, 143, 1862–1889. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Programme Against Africa, Trypanosomiasis. 2023. Available online: https://www.fao.org/paat/the-programme/the-disease/en/ (accessed on 22 December 2023).
- Fairlamb, A.H. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol. 2003, 19, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Betu Kumeso, V.K.; Kalonji, W.M.; Rembry, S.; Mordt, O.V.; Tete, D.N.; Prêtre, A.; Delhomme, S.; Kyhi, M.I.W.; Camara, M.; Catusse, J.; et al. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: A multicenter, open-label, single-arm, phase 2/3 trial. Lancet Infect. Dis. 2023, 23, 463–470. [Google Scholar] [CrossRef]
- Christensen, S.B. Natural products that changed society. Biomedicines 2021, 9, 472. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol. Ther. 2020, 216, 107658. [Google Scholar] [CrossRef] [PubMed]
- Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef]
- Pinto-Martinez, A.K.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrob. Agents Chemother. 2017, 62, e01614-17. [Google Scholar] [CrossRef]
- Torreele, E.; Bourdin Trunz, B.; Tweats, D.; Kaiser, M.; Brun, R.; Mazué, G.; Bray, M.A.; Pécoul, B. Fexinidazole--a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl. Trop. Dis. 2010, 4, e923. [Google Scholar] [CrossRef]
- Raimondi, M.V.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules 2019, 24, 1140. [Google Scholar] [CrossRef]
- Wróbel, A.; Drozdowska, D. Recent design and structure-activity relationship studies on the modifications of DHFR inhibitors as anticancer agents. Curr. Med. Chem. 2021, 28, 910–939. [Google Scholar] [CrossRef]
- Bilsland, E.; van Vliet, L.; Williams, K.; Feltham, J.; Carrasco, M.P.; Fotoran, W.L.; Cubillos, E.F.G.; Wunderlich, G.; Grøtli, M.; Hollfelder, F.; et al. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 2018, 8, 1038. [Google Scholar] [CrossRef]
- Shamshad, H.; Bakri, R.; Mirza, A.Z. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Mol. Biol. Rep. 2022, 49, 6659–6691. [Google Scholar] [CrossRef]
- Gangjee, A.; Kurup, S.; Namjoshi, O. Dihydrofolate reductase as a target for chemotherapy in parasites. Curr. Pharm. Des. 2007, 13, 609–639. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Chauhan, M. Dihydrofolate reductase as a therapeutic target for infectious diseases: Opportunities and challenges. Future Med. Chem. 2012, 4, 1335–1365. [Google Scholar] [CrossRef]
- Choudhury, A.A.K.; Vinayagam, S.; Adhikari, N.; Ghosh, S.K.; Sattu, K. Microwave synthesis and antimalarial screening of novel 4-amino benzoic acid (PABA)-substituted pyrimidine derivatives as Plasmodium falciparum dihydrofolate reductase inhibitors. 3 Biotech 2022, 12, 170. [Google Scholar] [CrossRef]
- Yuthavong, Y.; Tarnchompoo, B.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Charman, S.A.; McLennan, D.N.; White, K.L.; Vivas, L.; Bongard, E.; et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA 2012, 109, 16823–16828. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, I.H. Inhibitors of dihydrofolate reductase in leishmania and trypanosomes. Biochim. Biophys. Acta Mol. Basis Dis. 2002, 1587, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.V.F.; Teles, A.L.B.; Silva, S.G.D.; Brito, C.C.B.; Freitas, H.F.; Pires, A.B.L.; Froes, T.Q.; Castilho, M.S. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J. Enzyme Inhib. Med. Chem. 2019, 34, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Dize, D.; Tata, R.B.; Keumoe, R.; Kouipou Toghueo, R.M.; Tchatat, M.B.; Njanpa, C.N.; Tchuenguia, V.C.; Yamthe, L.T.; Fokou, P.V.T.; Laleu, B.; et al. Preliminary structure–activity relationship study of the MMV pathogen box compound MMV675968 (2,4-diaminoquinazoline) unveils novel inhibitors of Trypanosoma brucei brucei. Molecules 2022, 27, 6574. [Google Scholar] [CrossRef] [PubMed]
- Waller, K.L.; Kim, K.; McDonald, T.V. Plasmodium falciparum: Growth response to potassium channel blocking compounds. Exp. Parasitol. 2008, 120, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Mosimann, M.; Goshima, S.; Wenzler, T.; Lu, A.; Uozumi, N.; Ma, P. A Trk/HKT-Type K+ transporter from Trypanosoma brucei. Eukaryot. Cell. 2010, 9, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Purhonen, P.; Hebert, H. Structure of potassium channels. Cell. Mol. Life Sci. 2015, 72, 3677–3693. [Google Scholar] [CrossRef]
- Paul, A.; Mubashra; Singh, S. Identification of a novel calcium activated potassium channel from Leishmania donovani and in silico predictions of its antigenic features. Acta Trop. 2021, 220, 105922. [Google Scholar] [CrossRef] [PubMed]
- Ellekvist, P.; Mlambo, G.; Kumar, N.; Klaerke, D.A. Functional characterization of malaria parasites deficient in the K+ channel Kch2. Biochem. Biophys. Res. Commun. 2017, 493, 690–696. [Google Scholar] [CrossRef]
- Barteselli, A.; Casagrande, M.; Basilico, N.; Parapini, S.; Rusconi, C.M.; Tonelli, M.; Boido, V.; Taramelli, D.; Sparatore, F.; Sparatore, A. Clofazimine analogs with antileishmanial and antiplasmodial activity. Bioorg. Med. Chem. 2015, 23, 55–65. [Google Scholar] [CrossRef]
- Serrano-Martín, X.; Payares, G.; Mendoza-León, A. Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob. Agents Chemother. 2006, 50, 4214–4216. [Google Scholar] [CrossRef]
- Schmidt, R.S.; Macedo, J.P.; Steinmann, M.E.; Salgado, A.G.; Butikofer, P.; Sigel, E.; Rentsch, D.; Maser, P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 2018, 285, 1012–1023. [Google Scholar] [CrossRef]
- Andrade, E.L.; Bento, A.F.; Cavalli, J.; Oliveira, S.K.; Freitas, C.S.; Marcon, R.; Schwanke, R.C.; Siqueira, J.M.; Calixto, J.B. Nonclinical studies required for new drug development—Part I: Early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Braz. J. Med. Biol. Res. 2016, 49, e5644. [Google Scholar] [CrossRef]
- Müller, J.; Hemphill, A. Drug target identification in protozoan parasites Drug target identification in protozoan parasites. Expert Opin. Drug Discov. 2016, 11, 815–824. [Google Scholar] [CrossRef]
- Kotake, Y.; Iijima, A.; Yoshimatau, K.; Tamai, N.; Ozawa, Y.; Koyanagi, N.; Kitoh, K.; Nomura, H. Synthesis and antitumor activities of novel 6-5 fused ring heterocycle antifolates: N-[4-[o-(2-amino-4-substituted-6,7-dihydrocyclopenta[~pyrimidin-5-yl)alkyl]benzoyl]-L-glutamic Acids. J. Med. Chem. 1994, 37, 1616–1624. [Google Scholar] [CrossRef]
- Kotake, Y.; Okauchi, T.; Iuima, A.; Yoshimatau, K.; Nomura, H. Novel 6-5 fused ring heterocycle antifolates with potent antitumor activity: Bridge modifications and heterocyclic Benzoyl isosters of 2,4-diamino-6.7-difydro-5H-cyclopenta[d]pyrimidine antifolate. Chem. Pharm. Bull. 1995, 43, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Mcguire, J.J.; Bergoltz, V.V.; Heitzman, K.J.; Haile, W.H.; Russell, C.A.; Bolanowska, E. Novel 6,5-fused ring heterocyclic antifolates: Biochemical and biological characterization. Cancer Res. 1994, 54, 2673–2680. [Google Scholar] [PubMed]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Hirumi, H.; Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989, 75, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Bowling, T.; Mercer, L.; Don, R.; Jacobs, R.; Nare, B. Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human african trypanosomiasis. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Neto, J.L.; Song, O.R.; Oh, H.; Sohn, J.H.; Yang, G.; Nam, J.; Jang, J.; Cechetto, J.; Lee, C.B.; Moon, S.; et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl. Trop. Dis. 2010, 4, e675. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Sahu, R.; Walker, L.A.; Tekwani, B.L. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J. Vis. Exp. 2012, 70, 4054. [Google Scholar]
- Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 2004, 48, 1803–1806. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res. 2019, 33, 2473–2517. [Google Scholar] [CrossRef]
- Tchatat Tali, M.B.; Boniface, P.K.; Jean Claude, T.; Fabrice, F.F. Current developments on the antimalarial, antileishmanial, and antitrypanosomal potential and mechanisms of action of Terminalia spp. S. Afr. J. Bot. 2023, 156, 309–333. [Google Scholar] [CrossRef]
- Jacobs, L.; de Kock, C.; Taylor, D.; Pelly, S.C.; Blackie, M.A.L. Synthesis of five libraries of 6,5-fused heterocycles to establish the importance of the heterocyclic core for antiplasmodial activity. Bioorg. Med. Chem. 2018, 26, 5730–5741. [Google Scholar] [CrossRef]
- Faarasse, S.; El Brahmi, N.; Guillaumet, G.; El Kazzouli, S. Regioselective C-H Functionalization of the six-membered ring of the 6,5-fused heterocyclic systems: An overview. Molecules 2021, 26, 5763. [Google Scholar] [CrossRef]
- Kurniaty, N.; Maharani, R.; Hidayat, A.T.; Supratman, U. An Overview on antimalarial peptides: Natural sources, synthetic methodology and biological properties. Molecules 2023, 28, 7778. [Google Scholar] [CrossRef]
- Varela, M.T.; Amaral, M.; Romanelli, M.M.; de Castro Levatti, E.V.; Tempone, A.G.; Fernandes, J.P.S. Optimization of physicochemical properties is a strategy to improve drug-likeness associated with activity: Novel active and selective compounds against Trypanosoma cruzi. Eur. J. Pharm. Sci. 2022, 171, 106114. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J. 2018, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.G.; Junker, A.; de Melo, S.M.G.; Fumagalli, F.; Gillespie, J.R.; Molasky, N.; Buckner, F.S.; Matheeussen, A.; Caljon, G.; Maes, L.; et al. Synthesis and structure-activity relationships of imidazopyridine/pyrimidine- and furopyridine-based anti-infective agents against trypanosomiases. ChemMedChem 2021, 16, 966–975. [Google Scholar] [CrossRef]
- Pérez-Silanes, S.; Berrade, L.; García-Sánchez, R.N.; Mendoza, A.; Galiano, S.; Pérez-Solórzano, B.M.; Nogal-Ruiz, J.J.; Martínez-Fernández, A.R.; Aldana, I.; Monge, A. New 1-aryl-3-substituted propanol derivatives as antimalarial agents. Molecules 2009, 14, 4120–4135. [Google Scholar] [CrossRef] [PubMed]
- Ravindar, L.; Hasbullah, S.A.; Rakesh, K.P.; Hassan, N.I. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur. J. Med. Chem. 2023, 256, 115458. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the physicochemical properties of Acaricides based on Lipinski’s Rule of five. J. Comput. Biol. 2020, 27, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Singh, A.V.; Paudel, N.; Kanase, A.; Falletta, E.; Kerkar, P.; Heyda, J.; Barghash, R.F.; Pratap Singh, S.; Soos, M. Herbal concoction unveiled: A computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr. Res. Toxicol. 2023, 5, 100118. [Google Scholar] [CrossRef] [PubMed]
- Guenfoud, F.; Khaoua, O.; Cherak, Z.; Loucif, L.; Boussebaa, W.; Benbellat, N.; Laabassi, M.; Mosset, P. Synthesis, antimicrobial, DFT, and in silico pharmacokinetic profiling of nitroaldol quinoline derivatives: A comprehensive exploration for designing potential oral antibacterial agents targeting DNA-gyrase. J. Mol. Struct. 2024, 1300, 137293. [Google Scholar] [CrossRef]
Compounds | * IC50 (nM)_DHFR | References | ||
---|---|---|---|---|
Bovine Liver | P388 | CCRF-CEM | ||
X | 2.5 | 7.1 | 0.6 | [40,41,42] |
Y | 5.9 | - | 0.8 | [41,42] |
Z | 60,000 | - | - | [40] |
SI | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds ID | IC50 ± SD (µM) | CC50± SD (µM) | T. b. brucei | L. donovani | L. donovani | Pf_3D7 | |||||||||
prom | ama | ||||||||||||||
T. b. brucei | L. donovani | L. donovani | Pf_3D7 | Raw264.7 | Vero | HepG-2 | Raw264.7 | Vero/ | Raw264.7 | Vero/ | Raw264.7 | Vero/ | Raw264.7 | Vero/ | |
Prom | ama | HepG-2 | HepG-2 | HepG-2 | HepG-2 | ||||||||||
Compound-X | 6.49 ± 0.4 | ˃10 | NT | 0.0052 | 1.91 ± 0.09 | ˃50 | ˃50 | 0.29 | ˃7.7 | 366.6 | ˃9596 | ||||
Compound-Y | 0.81 ± 0.00 | 12.47 ± 3.04 | 4.28 ± 0.12 | 0.028 | 33.58 ± 5.5 | ˃50 | ˃50 | 41 | ˃61.4 | 2.69 | ˃4 | 7.85 | ˃11.7 | 1179 | ˃1756 |
Compound-Z | ˃10 | ˃10 | NT | ˃10 | ˃50 | ˃50 | ˃50 | ||||||||
E4031 | ˃10 | 10 | NT | ˃10 | ˃50 | ˃50 | ˃50 | ˃5 | |||||||
Pentamidine | 0.006 ± 0.00 | >50 | >50 | >50 | >8000 | >8000 | |||||||||
Artemisinin | 0.03 ± 0.004 | >50 | >50 | >50 | >1600 | >1600 | |||||||||
Amphotericin B | 0.020 ± 0.0016 | 0.248 ± 0.024 | >50 | >50 | >50 | >2500 | >2500 | >201 | >201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dize, D.; Tali, M.B.T.; Ngansop, C.A.N.; Keumoe, R.; Madiesse Kemgne, E.A.; Yamthe, L.R.T.; Tsouh Fokou, P.V.; Pone Kamdem, B.; Hata, K.; Fekam Boyom, F. Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro. Future Pharmacol. 2024, 4, 188-198. https://doi.org/10.3390/futurepharmacol4010013
Dize D, Tali MBT, Ngansop CAN, Keumoe R, Madiesse Kemgne EA, Yamthe LRT, Tsouh Fokou PV, Pone Kamdem B, Hata K, Fekam Boyom F. Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro. Future Pharmacology. 2024; 4(1):188-198. https://doi.org/10.3390/futurepharmacol4010013
Chicago/Turabian StyleDize, Darline, Mariscal Brice Tchatat Tali, Cyrille Armel Njanpa Ngansop, Rodrigue Keumoe, Eugenie Aimée Madiesse Kemgne, Lauve Rachel Tchokouaha Yamthe, Patrick Valere Tsouh Fokou, Boniface Pone Kamdem, Katsura Hata, and Fabrice Fekam Boyom. 2024. "Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro" Future Pharmacology 4, no. 1: 188-198. https://doi.org/10.3390/futurepharmacol4010013
APA StyleDize, D., Tali, M. B. T., Ngansop, C. A. N., Keumoe, R., Madiesse Kemgne, E. A., Yamthe, L. R. T., Tsouh Fokou, P. V., Pone Kamdem, B., Hata, K., & Fekam Boyom, F. (2024). Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro. Future Pharmacology, 4(1), 188-198. https://doi.org/10.3390/futurepharmacol4010013