Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Plant Material
2.1.2. Fungal Strains
2.2. Methods
2.2.1. Extraction of the Essential Oil
2.2.2. GC-MS Analysis of Essential Oils from Flower Buds and Leaves of S. aromaticum
- KI = Kovats retention index;
- Tr (Cn) = retention time of alkane at n atoms of carbons;
- Tr (Cn + 1) = retention time of alkane at (n + 1) atoms of carbons;
- Tr (x) = retention time for compound x.
2.2.3. Antifungal Activity
- Preparation of microbial inocula
- b.
- Preparation of solutions
- b.1.
- Preparation of essential oils
- b.2.
- Preparation of the sterility control
- c.
- Determination of minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs)
- c.1.
- Determination of minimum inhibitory concentrations
- c.2.
- Determination of the minimum fungicidal concentrations
2.3. Antioxidant Activity
2.3.1. 1,1-Diphenyl-2-Picryl Hydrazyl (DPPH) Radical Scavenging Assay
2.3.2. ABTS Radical Scavenging Assay
2.3.3. Ferric-Reducing Antioxidant Power Assay (FRAP)
2.3.4. Statistical Analysis
3. Results
3.1. Yields of Extraction
3.2. Chemical Composition of the Essential Oils
3.3. Antifungal Activity
3.4. Antioxidant Activity
3.4.1. DPPH Assay
3.4.2. ABTS Assay
3.4.3. FRAP Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Health Organization (WHO). Infectious Diseases. 2024. Available online: https://www.emro.who.int/health-topics/infectious-diseases/index.html (accessed on 30 April 2024).
- The World Health Organization (WHO). WHO Traditional Medicine Strategy: 2014–2023; WHO: Geneva, Germany, 2014; pp. 1–72. Available online: https://www.who.int/publications/i/item/9789241506096 (accessed on 9 July 2024).
- Zhang, Z.; Bills, G.F.; An, Z. Advances in the treatment of invasive fungal disease. PLoS Pathog. 2023, 19, e1011322. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease—Author’s reply. Lancet Infect. Dis. 2024, 24, e269. [Google Scholar] [CrossRef]
- Rajasingham, R.; Govender, N.P.; Jordan, A.; Loyse, A.; Shroufi., A.; Denning., D.W.; Meya., D.B.; Chiller., T.M.; Boulware, D.R. The global burden of HIV-associated cryptococcal infection in adults in 2020: A modelling analysis. Lancet Infect. Dis. 2022, 22, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Azie, N.; Neofytos, D.; Pfaller, M.; Meier-Kriesche, H.U.; Quan, S.P.; Horn, D. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: Update 2012. Diagn. Microbiol. Infect. Dis. 2012, 73, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; Caggiano, G.; Lovero, G.; De Giglio, O.; Coretti, C.; Cuna, T.; Iatta, R.; Giglio, M.; Dalfino, L.; Bruno, F.; et al. Epidemiology of invasive fungal infections in the intensive care unit: Results of a multicenter Italian survey (AURORA Project). Infection 2013, 41, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef]
- Komalapriya, C.; Kaloriti, D.; Tillmann, A.T.; Yin, Z.; Herrero-de-Dios, C.; Jacobsen, M.D.; Belmonte, R.C.; Cameron, G.; Haynes, K.; Grebogi, C.; et al. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS ONE 2015, 10, e0137750. [Google Scholar] [CrossRef]
- Dantas, A.D.S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules 2015, 5, 142–165. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, D.; Nobile, C.J.; Dong, D.; Ni, Q.; Su, T.; Jiang, C.; Peng, Y. Systematic identification and characterization of five transcription factors mediating the oxidative stress response in Candida albicans. Microb. Pathog. 2024, 187, 106507. [Google Scholar] [CrossRef]
- Ghenciu, L.A.; Faur, A.C.; Bolintineanu, S.L.; Salavat, M.C.; Maghiari, A.L. Recent advances in diagnosis and treatment approaches in fungal keratitis: A narrative review. Microorganisms 2024, 12, 161. [Google Scholar] [CrossRef]
- Ramakrishnan, T.; Constantinou, M.; Jhanji, V.; Vajpayee, R.B. Factors affecting treatment outcomes with voriconazole in cases with fungal keratitis. Cornea 2013, 32, 445–449. [Google Scholar] [CrossRef]
- Akwongo, B.; Katuura, E.; Nsubuga, A.M.; Tugume, P.; Andama, M.; Anywar, G.; Namaganda, M.; Asimwe, S.; Kakudidi, E.K. Ethnobotanical study of medicinal plants utilized in the management of candidiasis in Northern Uganda. Trop. Med. Health 2022, 50, 78. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.A.; Tayebwa, D.S.; Shaheen, M.H.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick. Borne Dis. 2019, 10, 949–958. [Google Scholar] [CrossRef]
- Bhowmik, D.; Kumar, K.S.; Yadav, A.; Srivastava, S.; Paswan, S.; Dutta, A.S. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J. Pharmaco Phytochem. 2012, 1, 13–23. [Google Scholar]
- Rana, I.S.; Rana, A.S.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol. 2011, 42, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Gonzalez, A.E.; Palou, E.; Lopez-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against grey mold (Botrytis cinerea) in strawberries. Innov. Food Sci. Emerg. Technol. 2015, 32, 181–185. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.F.; Al-Askar, A.A. In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complement. Med. Ther. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.-F.; Yassin, M.T.; Al–Askar, A.A.; Al-Otibi, F.O. Phytochemical analysis, antiproliferative and antifungal activities of different Syzygium aromaticum solvent extracts. J. King Saud. Univ. Sci. 2022, 35, 102362. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef]
- Arbab, I.A.; Abdul, A.B.; Aspollah, M.; Abdullah, R.; Abdelwahab, S.I.; Ibrahim, M.Y.; Ali, L.Z. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). J. Med. Plant Res. 2012, 6, 5107–5118. [Google Scholar]
- da Silva, L.Y.S.; Paulo, C.L.R.; Moura, T.F.; Alves, D.S.; Pessoa, R.T.; Araújo, I.M.; de Morais Oliveira-Tintino, C.D.; Tintino, S.R.; Nonato, C.F.A.; da Costa, J.G.M.; et al. Antibacterial activity of the essential oil of Piper tuberculatum Jacq. Fruits against multidrug-resistant strains: Inhibition of efflux pumps and β-lactamase. Plants 2023, 12, 2377. [Google Scholar] [CrossRef] [PubMed]
- Soussy, C.J.; Carret, G.; Cavallo, J.D.; Chardon, H.; Chidiac, C.; Choutet, P.; Courvalin, P.; Dabernat, H.; Drugeon, H.; Dubreuil, L.; et al. Antibiogram Committee of the French Microbiology Society (AC-FMS). Report 2000–2001. Pathol. Biol. 2000, 48, 832–871. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Dellaoui, H.; Berroukche, A.; Halla, N.; Boudaoud, L.; Terras, M. Phytochemical study and evaluation of the antioxidant of Myrtus communis L. fruit’s methanolic extract. PhytoChem BioSub J. 2018, 12, 100–109. [Google Scholar]
- Ladoh, Y.C.F.; Dibong, S.D.; Nyegue, M.A.; Djembissi Talla, R.P.; Lenta Ndjakou, B.; Mpondo, E.; Yinyang, J.; Wansi, J.D. Activité antioxydante des extraits méthanolique de Phragmentera capitata sur Citrus sinensis. J. Appl. Biosci. 2014, 84, 7636–7643. [Google Scholar] [CrossRef]
- Durczyńska, Z.; Żukowska, G. Properties and applications of essential oils: A Review. J. Ecol. Eng. 2024, 25, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Adli, D.E.H.; Kahloula, K.; Slimani, M.; Brahmi, M.; Benreguieg, M. Prophylactic Effects of Syzygium aromaticum Essential Oil on Developing Wistar Rats Co-exposed to Lead and Manganese. Phytotherapie 2017, 16, 1–7. [Google Scholar] [CrossRef]
- Adjal, F.; Menasra, H.; bouabdalla, I.A.; Chagra, K.; Almi, S. Physicochemical properties, antibacterial activity, and corrosion inhibition of Clove (Syzygium aromaticum L.) ressential oil. J. Surv. Fish. Sci. 2023, 10, 610–617. [Google Scholar]
- Alitonou, G.; Tchobo, F.; Avlessi, F.; Yehouenou, B.; Yedomonhan, P.; Koudoro, A.; Menut, C.; Sohounhloue, D.K. Chemical and biological investigations of Syzygium aromaticum L. essential oil from Benin. Int. J. Biol. Chem. Sci. 2012, 6, 1360–1367. [Google Scholar] [CrossRef]
- Patience, M.F.; Sylvie, N.K.; Sameza, M.; Tchoumbougnang, F.; Tchabong, R.; Ngoune, L.T.; Dongmo, P.M.J. Antioxidant and antifungal activities of Cocoa butter (Theobroma cacao), essential oil of Syzygium aromaticum and a combination of both extracts against three dermatophytes. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 37, 255–272. [Google Scholar]
- Djenane, D. Chemical profile, antibacterial and antioxidant activity of Algerian citrus essential oils and their application in Sardina pilchardus. Foods 2015, 4, 208–228. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Razafimamonjison, G.; Jahiel, M.; Duclos, T.; Ramanoelina, P.; Fawbush, F. Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar. Int. J. Basic. Appl. Sci. 2014, 3, 224–233. [Google Scholar]
- Didehdar, M.; Chegini, Z.; Shariati, A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front. Pharmacol. 2022, 13, 872127. [Google Scholar] [CrossRef]
- Olea, A.F.; Bravo, A.; Martínez, R.; Thomas, M.; Sedan, C.; Espinoza, L.; Zambrano, E.; Carvajal, D.; Silva-Moreno, E.; Carrasco, H. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules 2019, 24, 1239. [Google Scholar] [CrossRef]
- Aliabasi, S.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. 2023. Eugenol effectively inhibits Trichophyton rubrum growth via affecting ergosterol synthesis, keratinase activity, and SUB3 gene expression. J. Herb. Med. 2023, 42, 100768. [Google Scholar] [CrossRef]
- He, M.; Du, M.; Fan, M.; Bian, Z. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia 2007, 163, 137–143. [Google Scholar] [CrossRef]
- Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef]
- Nogueira Sobrinho, A.C.; de Morais, S.M.; de Souza, E.B.; Albuquerque, M.R.J.R.; dos Santos, H.S.; de Paula Cavalcante, C.S.; de Sousa, H.A.; dos Santos Fontenelle, R.O. Antifungal and antioxidant activities of Vernonia chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Braz. Arch. Biol. Technol. 2020, 63, e20190177. [Google Scholar] [CrossRef]
- Pibiri, M.C.; Goel, A.; Vahekeni, N.; Roulet, C.A. Indoor air purification and ventilation systems sanitation with essential oils. Int. J. Aromather. 2006, 16, 149–153. [Google Scholar] [CrossRef]
- Khan, M.S.; Ahmad, I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 2012, 67, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Konuk, H.B.; Ergüden, B. Phenolic -OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia. Microbiol. 2020, 65, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Chami, N.; Bennis, S.; Chami, F.; Aboussekhra, A.; Remmal, A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral. Microbiol. Immunol. 2005, 20, 106–111. [Google Scholar] [CrossRef]
- Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J. Taibah Univ. Med. Sci. 2018, 13, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Rifkind, J.M.; Boindala, S.; Nakka, L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol. Biol. 2010, 610, 165–180. [Google Scholar] [PubMed]
- Gülçin, İ. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Candido Júnior, J.R.; Romeiro, L.A.S.; Marinho, E.S.; Monteiro, N.K.V.; de Lima-Neto, P. Antioxidant activity of eugenol and its acetyl and nitroderivatives: The role of quinone intermediates-a DFT approach of DPPH test. J. Mol. Model. 2022, 28, 133. [Google Scholar] [CrossRef]
- Orlo, E.; Nerín, C.; Lavorgna, M.; Wrona, M.; Russo, C.; Stanzione, M.; Nugnes, R.; Isidori, M. Antioxidant activity of coatings containing eugenol for flexible aluminium foils to preserve food shelf-life. Food Packag. Shelf Life 2023, 39, 101145. [Google Scholar] [CrossRef]
- Shahina, Z.; Ndlovu, E.; Persaud, O.; Sultana, T.; Dahms, T.E.S. Candida albicans reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiol. Spectr. 2022, 10, e0318322. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, S.T.; Cekic, S.; Kirhan, E.; Dirican, M.; Kilic, S.S. Oxidative stress in common variable immunodeficiency. Eur. J. Inflamm. 2021, 19, 20587392211002411. [Google Scholar] [CrossRef]
- Harbige, L.S.; Gershwin, M.E. Antioxidant Nutrition and Immunity. In Handbook of Nutrition and Immunity; Gershwin, M.E., Nestel, P., Keen, C.L., Eds.; Humana Press: Totowa, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.M.; Ibrahim, O.M.S. Antifungal activity of clove (Syzygium aromaticum) essential oil extract against induced topical skin infection by Candida albicans in mice in vivo. Egypt. J. Hosp. Med. 2023, 91, 3855–3861. [Google Scholar] [CrossRef]
- Aisy, D.U.R.; Adawiyah, R.; Rozaliyani, R.; Estuningtyas, A.; Fadilah, F. The antifungal activities of Syzygium aromaticum and Alpinia purpurata extracts against Candida krusei: Bioactivity tests, molecular modeling, and toxicity tests. Asian Pac. J. Cancer Prev. 2023, 24, 3403–3406. [Google Scholar] [CrossRef]
Syzygium aromaticum | |||
---|---|---|---|
KI | Compounds | Flower Buds (%) | Leaves (%) |
92.72 | 90.54 | ||
Oxygenated monoterpenes | |||
989 | Eugenol | 87.08 | 90.54 |
995 | Phenol-2-methoxy-3-(2-propenyl) | 1.19 | - |
1047 | Acetyleugenol | 4.45 | - |
Hydrogenated sesquiterpenes | |||
7.28 | 9.46 | ||
1012 | β-Caryophyllene | 6.40 | 8.42 |
1023 | Humulene | 0.88 | 1.04 |
(EOFB) | (EOL) | Fluconazole | Ketoconazole | |||||
---|---|---|---|---|---|---|---|---|
Fungal Strains | MIC (ppm) | MFC (ppm) | MFC/ MIC | MIC (ppm) | MFC (ppm) | MFC/ MIC | MIC (ppm) | MIC (ppm) |
C. albicans | 200 | 400 | 2 | 200 | 400 | 2 | 800 | 25 |
C. glabrata | 200 | 400 | 2 | 200 | 400 | 2 | 0 | 50 |
C. tropicalis | 200 | 200 | 1 | 200 | 400 | 2 | 1600 | 50 |
C. krusei | 200 | 400 | 2 | 200 | 400 | 2 | 0 | 100 |
Cryptococcusneoformans | 50 | 100 | 2 | 50 | 100 | 2 | 100 | 25 |
Concentrations (ppm) | 1.56 | 3.13 | 6.25 | 12.5 | 25 | 50 |
---|---|---|---|---|---|---|
EOs/BHT | Percentages of Free Radicals Scavenged by the EOs (%) | |||||
EOFB | 18.54 ± 0.96 a | 25.56 ± 1.19 b | 32.41 ± 0.63 c | 42.03 ± 0.20 d | 49.27 ± 1.18 e | 67.37 ± 0.31 f |
EOL | 24.29 ± 1.04 a | 38.05 ± 1.42 b | 57.95 ± 0.43 c | 74.56 ± 0.94 d | 81.80 ± 0.84 e | 83.86 ± 0.94 f |
BHT | 8.04 ± 0.26 a | 16.73 ± 0.30 b | 25.10 ± 0.45 c | 35.12 ± 0.91 d | 38.99 ± 0.89 e | 52.98 ± 0.79 f |
Essential Oils/BHT | SC50 (g/L) | CE50 (g/mol) | AP (mol/g) |
---|---|---|---|
EOFB | 22.5 × 10−3 | 2.25 × 103 | 4.44 × 10−4 |
EOL | 4.5 × 10−3 | 4.5 × 102 | 2.22 × 10−3 |
BHT | 44.5 × 10−3 | 4.45 × 103 | 2.24 × 10−4 |
Concentrations (ppm) | 1.56 | 3.13 | 6.25 | 12.5 | 25 | 50 |
ABTS test | Percentages of inhibition (%) | |||||
EOFB | 27.18 ± 1.70 a | 41.91 ± 0.38 b | 68.27 ± 1.49 c | 84.36 ± 1.39 d | 85.88 ± 0.71 d | 87.32 ± 0.21 e |
EOL | 4.18 ± 0.43 a | 7.65 ± 0.62 b | 13.10 ± 1.04 c | 27.98 ± 1.25 d | 69.89 ± 1.94 e | 85.08 ± 0.21 f |
Concentrations (ppm) | 31.25 | 62.25 | 125 | 250 | 500 | 1000 |
BHT | 21.83 ± 0.58 a | 35.50 ± 1.27 b | 56.03 ± 1.36 c | 77.16 ± 1.31 d | 87.37 ± 1.35 e | 88.39 ± 0.06 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momo, E.J.; Nguimatsia, F.; Ateufouet Ngouango, L.; Lunga, P.K.; Pone Kamdem, B.; Jazet Dongmo, P.M. Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species. Future Pharmacol. 2024, 4, 449-465. https://doi.org/10.3390/futurepharmacol4030025
Momo EJ, Nguimatsia F, Ateufouet Ngouango L, Lunga PK, Pone Kamdem B, Jazet Dongmo PM. Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species. Future Pharmacology. 2024; 4(3):449-465. https://doi.org/10.3390/futurepharmacol4030025
Chicago/Turabian StyleMomo, Evariste Josué, François Nguimatsia, Laure Ateufouet Ngouango, Paul Keilah Lunga, Boniface Pone Kamdem, and Pierre Michel Jazet Dongmo. 2024. "Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species" Future Pharmacology 4, no. 3: 449-465. https://doi.org/10.3390/futurepharmacol4030025
APA StyleMomo, E. J., Nguimatsia, F., Ateufouet Ngouango, L., Lunga, P. K., Pone Kamdem, B., & Jazet Dongmo, P. M. (2024). Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species. Future Pharmacology, 4(3), 449-465. https://doi.org/10.3390/futurepharmacol4030025