The Role of Vanadium in Metallodrugs Design and Its Interactive Profile with Protein Targets
Abstract
:1. Introduction: The Vanadium Element
2. Vanadium in Biological Systems
3. Natural Enzymes with Vanadium in Their Catalytic Core
4. Bioaccumulation of Vanadium by Terrestrial Organisms
5. Vanadium Salts, Complexes, Prodrugs, and Metallodrugs
6. Vanadium Complexes with Antidiabetic Activities
7. Vanadium Complexes with Anti-Inflammatory Action in Neurodegenerative Diseases
8. Vanadium Complexes as Inhibitors of Protein Tyrosine Phosphatases (PTPs)
9. Vanadium Complexes as Anticarcinogenic Action
10. Serum Albumin in Metallodrug Discovery
11. Biophysical Characterization on the Interactions Between Albumin and Vanadium-Based Compounds
12. Structural Evaluation of the Interaction Between Model Proteins and Vanadium-Based Compounds
13. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, L.; Araujo, M.L.; Madden, W.; Del Carpio, E.; Lubes, V.; Lubes, G. Vanadium complexes with polypyridyl ligands: Speciation, structure and potential medicinal activity. J. Inorg. Biochem. 2022, 229, 111712. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Alessi, D.S.; Tack, F.M.G.; Ok, Y.S.; Kim, K.-H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications—A review. Adv. Colloid Interf. Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef]
- Sahu, G.; Banerjee, A.; Samanta, R.; Mohanty, M.; Lima, S.; Tiekink, E.R.T.; Dinda, R. Water-soluble dioxidovanadium(V) complexes of aroylhydrazones: DNA/BSA interactions, hydrophobicity, and cell-selective anticancer potential. Inorg. Chem. 2021, 60, 15291–15309. [Google Scholar] [CrossRef]
- Bhunia, P.; Gomila, R.M.; Frontera, A.; Ghosh, A. Combine effect of Lewis acidity and electric field of proximal redox innocent metal ions on redox potential of vanadyl Schiff base complexes: Experimental and theoretical study. Dalton Trans. 2023, 52, 3097–3110. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Nippe, M.; Atanasov, M.; Chantarojsiri, T.; Wray, C.A.; Bill, E.; Neese, F.; Long, J.R.; Chang, C.J. A well-defined terminal vanadium(III) oxo complex. Inorg. Chem. 2014, 53, 11388–11395. [Google Scholar] [CrossRef] [PubMed]
- Dieter, R. The future of/for vanadium. Dalton Trans. 2013, 42, 11749–11761. [Google Scholar]
- Gambino, D. New trends on vanadium chemistry, biochemistry, and medicinal chemistry. Inorganics 2022, 10, 68. [Google Scholar] [CrossRef]
- Rehder, D. The role of vanadium in biology. Metallomics 2015, 7, 730–742. [Google Scholar] [CrossRef]
- Del Carpio, E.; Hernández, L.; Ciangherotti, C.; Coa, V.V.; Jiménez, L.; Lubes, V.; Lubes, G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord. Chem. Rev. 2018, 372, 117–140. [Google Scholar] [CrossRef]
- Topolska, J.; Puzio, B.; Borkiewicz, O.; Sordyl, J.; Manecki, M. Solubility product of vanadinite Pb5(VO4)3Cl at 25 °C—A comprehensive approach to incongruent dissolution modeling. Minerals 2021, 11, 135. [Google Scholar] [CrossRef]
- Faudoa-Gómez, F.G.; Fuentes-Cobas, L.E.; Esparza-Ponce, H.E.; Canche-Tello, J.G.; Reyes-Cortés, I.A.; Fuentes-Montero, M.E.; Eichert, D.M.; Rodríguez-Guerra, Y.; Montero-Cabrera, M.-E. Geological and crystallochemical characterization of the margaritasite–carnotite mineral from the uranium region of Peña Blanca, Chihuahua, Mexico. Minerals 2024, 14, 431. [Google Scholar] [CrossRef]
- Rout, C.S.; Kim, B.-H.; Xu, X.; Yang, J.; Jeong, H.Y.; Odkhuu, D.; Park, N.; Cho, J.; Shi, H.S. Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 2013, 135, 8720–8725. [Google Scholar] [CrossRef] [PubMed]
- Zanetta, P.-M.; Drexler, M.S.; Barton, I.F.; Zega, T.J. Vanadium electronic configuration determination from L2,3 transition in V-oxide compounds and roscoelite. Microsc. Microanal. 2023, 29, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Ueki, T.; Fujie, M.; Romaidi; Satoh, N. Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing. Mar. Genom. 2019, 43, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ueki, T.; Yamaguchi, N.; Romaidi; Isago, Y.; Tanahashi, H. Vanadium accumulation in ascidians: A system overview. Coord. Chem. Rev. 2015, 301, 300–308. [Google Scholar] [CrossRef]
- Yoshinaga, M.; Ueki, T.; Yamaguchi, N.; Kamino, K.; Michibata, H. Glutathione transferases with vanadium-binding activity isolated from the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim. Biophys. Acta 2006, 1760, 495–503. [Google Scholar] [CrossRef]
- Michibata, H.; Ueki, T. Advances in research on the accumulation, redox behavior, and function of vanadium in ascidians. BioMol Concepts 2010, 1, 97–107. [Google Scholar] [CrossRef]
- Macara, I.G.; McLeod, G.C.; Kustin, K. Tunichromes and metal ion accumulation in tunicate blood cells. Comp. Biochem. Physiol. 1979, B63, 299–302. [Google Scholar] [CrossRef]
- Ryan, D.E.; Grant, K.B.; Nakanishi, K. Reactions between tunichrome Mm-1, a tunicate blood pigment, and vanadium ions in acidic and neutral media. Biochemistry 1996, 35, 8640–8650. [Google Scholar] [CrossRef]
- Abebe, A.; Kuang, Q.F.; Evans, J.; Robinson, W.E.; Sugumaran, M. Oxidative transformation of a tunichrome model compound provides new insight into the crosslinking and defense reaction of tunichromes. Bioorg. Chem. 2017, 71, 219–229. [Google Scholar] [CrossRef]
- Ueki, T.; Satake, M.; Kamino, K.; Michibata, H. Sequence variation of Vanabin2-like vanadium-binding proteins in blood cells of the vanadium-accumulating ascidian Ascidia sydneiensis samea. Biochim. Biophys. Acta 2008, 1780, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Asanuma, M.; Ueki, T.; Hayashi, F.; Kobayashi, N.; Yokoyama, S.; Michibata, H.; Hirota, H. Solution structure of Vanabin2, a vanadium(IV)-binding protein from the vanadium-rich Ascidian Ascidia sydneiensis samea. J. Am. Chem. Soc. 2005, 127, 4216–4222. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Tsuboya, C.; Kusaka, H.; Aizawa, S.; Ueki, T.; Michibata, H.; Kanamori, K. Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochim. Biophys. Acta 2007, 1770, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, M. Nutrient Metabolism, 1st ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 762–766. [Google Scholar]
- Anke, M. Vanadium—An element both essential and toxic to plants, animals and humans? Anal. Real Acad. Nac. Farm. 2004, 70, 961–999. [Google Scholar]
- Levina, A.; McLeod, A.I.; Kremer, L.E.; Aitken, J.B.; Glover, C.J.; Johannessen, B.; Lay, P.A. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: An X-ray absorption spectroscopic study. Metallomics 2014, 6, 1880–1888. [Google Scholar] [CrossRef]
- Kiss, T.; Jakusch, T.; Hollender, D.; Dornyei, A.; Enyedy, E.A.; Costa-Pessoa, J.; Sakurai, H.; Sanz-Medel, A. Biospeciation of antidiabetic VO(IV) complexes. Coord. Chem. Rev. 2008, 252, 1153–1162. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Sakurai, H.; Crans, D.C.; Micera, G.; Garribba, E. Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans. 2014, 43, 6965–6972. [Google Scholar] [CrossRef]
- Crans, D.C.; Bunch, R.L.; Theisen, L.A. Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems. J. Am. Chem. Soc. 1989, 111, 7597–7607. [Google Scholar] [CrossRef]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef]
- Crans, D.C. Fifteen years of dancing with vanadium. Pure Appl. Chem. 2005, 77, 1497–1527. [Google Scholar] [CrossRef]
- Cooper, I.; Ravid, O.; Rand, D.; Atrakchi, D.; Shemesh, C.; Bresler, Y.; Ben-Nissan, G.; Sharon, M.; Fridkin, M.; Shechter, Y. Albumin-EDTA-vanadium is a powerful anti-proliferative agent, following entrance into glioma cells via caveolae-mediated endocytosis. Pharmaceutics 2021, 13, 1557. [Google Scholar] [CrossRef] [PubMed]
- Correia, I.; Jakusch, T.; Cobbinna, E.; Mehtab, S.; Tomaz, I.; Nagy, N.V.; Rockenbauer, A.; Pessoa, J.C.; Kiss, T. Evaluation of the binding of oxovanadium(IV) to human serum albumin. Dalton Trans. 2012, 41, 6477–6487. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.G.; Correia, I.; dos Santos, M.M.C.; Santos, M.F.A.; Santos-Silva, T.; Doutch, J.; Fernandes, L.; Santos, H.M.; Capelo, J.L.; Pessoa, J.C. Binding of vanadium to human serum transferrin—Voltammetric and spectrometric studies. J. Inorg. Biochem. 2018, 180, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Levina, A.; Lay, P.A. Vanadium(V/IV)−transferrin binding disrupts the transferrin cycle and reduces vanadium uptake and antiproliferative activity in human lung cancer cells. Inorg. Chem. 2020, 59, 16143–16153. [Google Scholar] [CrossRef]
- Sanna, D.; Micera, G.; Garribba, E. Interaction of VO2+ ion and some insulin-enhancing compounds with immunoglobulin G. Inorg. Chem. 2011, 50, 3717–3728. [Google Scholar] [CrossRef]
- Schrier, S.L.; Junga, I.; Ma, L. Studies on the effect of vanadate on endocytosis and shape changes in human red blood cells and ghosts. Blood 1986, 68, 1008–1014. [Google Scholar] [CrossRef]
- Amaral, L.M.P.F.; Moniz, T.; Silva, A.M.N.; Rangel, M. Vanadium compounds with antidiabetic potential. Int. J. Mol. Sci. 2023, 24, 15675. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Lu, J.; Crans, D.C. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord. Chem. Rev. 2003, 237, 103–111. [Google Scholar] [CrossRef]
- Nechay, B.R.; Saunders, J.P. Inhibition by vanadium of sodium and potassium dependent adenosinetriphosphatase derived from animal and human tissues. J. Environ. Pathol. Toxicol. 1978, 2, 247–262. [Google Scholar]
- Aureliano, M.; Ohlin, C.A. Decavanadate in vitro and in vivo effects: Facts and opinions. J. Inorg. Biochem. 2014, 137, 123–130. [Google Scholar] [CrossRef]
- Marques, M.P.M.; Gianolio, D.; Ramos, S.; Batista de Carvalho, L.A.E.; Aureliano, M. An EXAFS approach to the study of polyoxometalate-protein interactions: The case of decavanadate-actin. Inorg. Chem. 2017, 56, 10893–10903. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J.C. Thirty years through vanadium chemistry. J. Inorg. Biochem. 2015, 147, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Akabayov, S.R.; Akabayov, B. Vanadate in structural biology. Inorg. Chim. Acta 2014, 420, 16–23. [Google Scholar] [CrossRef]
- Höfler, G.T.; But, A.; Hollmann, F. Haloperoxidases as catalysts in organic synthesis. Org. Biomol. Chem. 2019, 17, 9267–9274. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Kaphan, D.M.; Marshall, C.L.; Stair, P.C.; Sattelberger, A.P.; Delferro, M. Catalytic applications of vanadium: A mechanistic perspective. Chem. Rev. 2019, 119, 2128–2191. [Google Scholar] [CrossRef]
- Messerschmidt, A.; Prade, L.; Wever, R. Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol. Chem. 1997, 378, 309–315. [Google Scholar] [CrossRef]
- Leblanc, C.; Vilter, H.; Fournier, J.-B.; Delage, L.; Potin, P.; Rebuffet, E.; Michel, G.; Solari, P.L.; Feiters, M.C.; Czjzeka, M. Vanadium haloperoxidases: From the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coord. Chem. Rev. 2015, 301, 134–146. [Google Scholar] [CrossRef]
- Wever, R.; Barnett, P. Vanadium chloroperoxidases: The missing link in the formation of chlorinated compounds and chloroform in the terrestrial environment? Chem. Asian J. 2017, 12, 1997–2007. [Google Scholar] [CrossRef]
- Porta, N.; Fejzagić, A.V.; Dumschott, K.; Paschold, B.; Usadel, B.; Pietruszka, J.; Classen, T.; Gohlke, H. Identification and characterization of the haloperoxidase VPO-RR from Rhodoplanes roseus by genome mining and structure-based catalytic site mapping. Catalysts 2022, 12, 1195. [Google Scholar] [CrossRef]
- Winter, J.M.; Moore, B.S. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J. Biol. Chem. 2009, 284, 18577–18581. [Google Scholar] [CrossRef]
- Ortiz-Bermúdez, P.; Hirth, K.C.; Srebotnik, E.; Hammel, K.E. Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc. Natl. Acad. Sci. USA 2007, 104, 3895–3900. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D. Vanadium in biological systems and medicinal applications. Inorg. Chim. Acta 2023, 549, 121387. [Google Scholar] [CrossRef]
- Gérard, E.F.; Mokkawes, T.; Johannissen, L.O.; Warwicker, J.; Spiess, R.R.; Blanford, C.F.; Hay, S.; Heyes, D.J.; de Visser, S.P. How is substrate halogenation triggered by the vanadium haloperoxidase from Curvularia inaequalis? ACS Catal. 2023, 13, 8247–8261. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, M.Q.E.; Gérard, E.F.; Blanford, C.F.; Hay, S.; de Visser, S.P. How do vanadium chloroperoxidases generate hypochlorite from hydrogen peroxide and chloride? A computational study. ACS Catal. 2020, 10, 14067–14079. [Google Scholar] [CrossRef]
- Zhilong, C. Recent development of biomimetic halogenation inspired by vanadium dependent haloperoxidase. Coord. Chem. Rev. 2022, 457, 214404. [Google Scholar]
- Seefeldt, L.C.; Yang, Z.-Y.; Lukoyanov, D.A.; Harris, D.F.; Dean, D.R.; Raugei, S.; Hoffman, B.M. Reduction of substrates by nitrogenases. Chem. Rev. 2020, 120, 5082–5106. [Google Scholar] [CrossRef]
- Sippel, D.; Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nature Chem. Biol. 2017, 13, 956–960. [Google Scholar] [CrossRef]
- Sippel, D.; Rohde, M.; Netzer, J.; Trncik, C.; Gies, J.; Grunau, K.; Djurdjevic, I.; Decamps, L.; Andrade, S.L.A.; Einsle, O. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 2018, 359, 1484–1489. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Jimenez-Vicente, E.; Kallas, H.; Lukoyanov, D.A.; Yang, H.; Martin Del Campo, J.S.; Dean, D.R.; Hoffman, B.M.; Seefeldt, L.C. The electronic structure of FeV-cofactor in vanadium-dependent nitrogenase. Chem. Sci. 2021, 12, 6913–6922. [Google Scholar] [CrossRef]
- Rees, J.A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; Debeer, S. The Fe–V cofactor of vanadium nitrogenase contains an interstitial carbon atom. Angew. Chem. Int. Ed. 2015, 54, 13249–13252. [Google Scholar] [CrossRef]
- Ugone, V.; Sanna, D.; Sciortino, G.; Crans, D.C.; Garribba, E. ESI-MS study of the interaction of potential oxidovanadium(IV) drugs and amavadin with model proteins. Inorg. Chem. 2020, 59, 9739–9755. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Amavadin, a vanadium natural complex: Its role and applications. Coord. Chem. Rev. 2013, 257, 2388–2400. [Google Scholar] [CrossRef]
- Berry, R.E.; Armstrong, E.M.; Beddoes, R.L.; Collison, D.; Ertok, S.N.; Helliwell, M.; Garner, C.D. The structural characterization of amavadin. Angew. Chem. Int. Ed. 1999, 38, 795–797. [Google Scholar] [CrossRef]
- Ferraro, G.; Merlino, A. Metallodrugs: Mechanisms of action, molecular targets and biological activity. Int. J. Mol. Sci. 2022, 23, 3504. [Google Scholar] [CrossRef]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Fontana, L.A.; Martins, F.M.; Siqueira, J.D.; Serpa, C.; Chaves, O.A.; Back, D.F. Synthesis of cobalt(III) complexes derived from pyridoxal: Structural cleavage evaluations and in silico calculations for biological targets. Inorganics 2024, 12, 171. [Google Scholar] [CrossRef]
- Ferretti, V.A.; León, I. An Overview of vanadium and cell signaling in potential cancer treatments. Inorganics 2022, 10, 47. [Google Scholar] [CrossRef]
- Amante, C.; de Sousa-Coelho, A.L.; Aureliano, M. Vanadium and melanoma: A systematic review. Metals 2021, 11, 828. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnan, U.M. Vanadium-flavonoid complexes: A promising class of molecules for therapeutic applications. J. Med. Chem. 2021, 64, 12435–12452. [Google Scholar] [CrossRef]
- Kioseoglou, E.; Petanidis, S.; Gabriel, C.; Salifoglou, A. The chemistry and biology of vanadium compounds in cancer therapeutics. Coord. Chem. Rev. 2015, 301, 87–105. [Google Scholar] [CrossRef]
- Arora, J.P.S.; Singh, R.P.; Soam, D.; Sharma, R. Comparison of binding of vanadium(V) with bovine serum albumin and bovine pancreatic trypsin. J. Electroanal. Chem. Interf. Electrochem. 1983, 155, 57–67. [Google Scholar] [CrossRef]
- De Sousa-Coelho, A.L.; Fraqueza, G.; Aureliano, M. Repurposing therapeutic drugs complexed to vanadium in cancer. Pharmaceuticals 2024, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J.C.; Etcheverry, S.; Gambino, D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015, 301, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Crans, C.D.; Zhang, B.; Gaidamauskas, E.; Keramidas, A.D.; Willsky, G.R.; Roberts, C.R. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution. Inorg. Chem. 2010, 49, 4245–4256. [Google Scholar] [CrossRef] [PubMed]
- Cruywagen, J.J.; Heyns, J.B.B.; Westra, A.N. Protonation equilibria of mononuclear vanadate: Thermodynamic evidence for the expansion of the coordination number in VO2+. Inorg. Chem. 1996, 35, 1556–1559. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.-L.; Hao, D.-L.; Mao, X.-W.; Xu, Y.-F.; Huang, T.-T.; Wu, B.-N.; Wang, L.-H. Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci. Lett. 2015, 602, 120–125. [Google Scholar] [CrossRef]
- Shaik, A.; Kondaparthy, V.; Begum, A.; Husain, A.; Das Manwal, D. Enzyme PTP-1B inhibition studies by vanadium metal complexes: A kinetic approach. Biol. Trace Elem. Res. 2023, 201, 5037–5052. [Google Scholar] [CrossRef]
- Thompson, K.H.; Orvig, C. Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord. Chem. Rev. 2001, 219, 1033–1053. [Google Scholar] [CrossRef]
- Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef]
- Kabir, E.; Noyon, M.R.O.K.; Hossain, M.A. Synthesis, biological and medicinal impacts of metallodrugs: A study. Res. Chem. 2023, 5, 100935. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Santos, M.F.A.; Correia, I.; Sanna, D.; Sciortino, G.; Garribba, E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord. Chem. Rev. 2021, 449, 214192. [Google Scholar] [CrossRef]
- Treviño, S.; Diaz, A. Vanadium and insulin: Partners in metabolic regulation. J. Inorg. Biochem. 2020, 208, 111094. [Google Scholar] [CrossRef] [PubMed]
- Goldwaser, I.; Gefel, D.; Gershonov, E.; Fridkin, M.; Shechter, Y. Insulin-like effects of vanadium: Basic and clinical implications. J. Inorg. Biochem. 2000, 80, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Orvig, C. Design of vanadium compounds as insulin enhancing agents. J. Chem. Soc. Dalton Trans. 2000, 17, 2885–2892. [Google Scholar] [CrossRef]
- Scibior, A.; Pietrzyk, L.; Plewa, Z.; Skiba, A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J. Trace Elem. Med. Biol. 2020, 61, 126508. [Google Scholar] [CrossRef]
- Trevino, S.; Diaz, A.; Sanchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; Gonzalez-Vergara, V. Vanadium in biological action: Chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Al-Younis, I.M.; Mohammed, H.A.; Dhahri, M.; Mouffouk, F.; Abu Ali, H.; Anwar, M.J.; Qureshi, K.A.; Hussien, M.A.; Alghrably, M.; et al. Therapeutic properties of vanadium complexes. Inorganics 2022, 10, 244. [Google Scholar] [CrossRef]
- Thompson, K.H.; Orvig, C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J. Inorg. Biochem. 2006, 100, 1925–1935. [Google Scholar]
- He, L.; Wang, X.; Zhao, C.; Zhu, D.; Du, W. Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes. Metallomics 2014, 6, 1087. [Google Scholar] [CrossRef]
- Mehdi, M.Z.; Pandey, S.K.; Théberge, J.-F.; Srivastava, A.K. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem. Biophys. 2006, 44, 73–81. [Google Scholar]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef]
- Kowalski, S.; Wyrzykowski, D.; Inkielewicz-Stepniak, I. Molecular and cellular mechanisms of cytotoxic activity of vanadium compounds against cancer cells. Molecules 2020, 25, 1757. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.M.R.; Tavares, C.A.; Pereira, A.F.; da Cunha, E.F.F.; Ramalho, T.C. Evaluation of autophagy inhibition to combat cancer: (vanadium complex)-protein interactions, parameterization, and validation of a new force field. J. Mol. Model. 2023, 29, 123. [Google Scholar] [PubMed]
- Yan He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target Ther. 2021, 6, 425. [Google Scholar]
- Marzban, L.; Rahimian, R.; Brownsey, R.W.; McNeill, J.H. Mechanisms by which bis(maltolato)oxovanadium(IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrinology 2020, 143, 4636–4645. [Google Scholar]
- Kiersztan, A.; Modzelewska, A.; Jarzyna, R.; Jagielska, E.; Bryla, J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem. Pharmacol. 2002, 63, 1371–1382. [Google Scholar] [CrossRef]
- Pan, C.-J.; Lei, K.-J.; Annabi, B.; Hemrika, W.; Chou, J.Y. Transmembrane topology of glucose-6-phosphatase. J. Biol. Chem. 1998, 273, 6144–6148. [Google Scholar] [CrossRef]
- Facchini, D.M.; Yuen, V.G.; Battell, M.L.; McNeill, J.H.; Grynpas, M.D. The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 2006, 38, 368–377. [Google Scholar]
- Laizé, V.; Tiago, D.M.; Aureliano, M.; Cancela, M.L. New insights into mineralogenic effects of vanadate. Cell Mol. Life Sci. 2009, 66, 3831–3836. [Google Scholar] [CrossRef]
- König, M.A.; Gautschi, O.P.; Simmen, H.-P.; Filgueira, L.; Cadosch, D. Influence of vanadium 4+ and 5+ ions on the differentiation and activation of human osteoclasts. Int. J. Biomater. 2017, 2017, 9439036. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, A.K.J.P.F.; Batista, E.K.; Postal, K.; Kostenkova, K.; Fenton, A.; Crans, C.C.; Silva, W.E.; Belian, M.F.; Lira, E.C. The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium (IV) complex. J. Inorg. Biochem. 2023, 24, 112127. [Google Scholar] [CrossRef] [PubMed]
- Batista, E.K.; de Lima, L.M.A.; Gomes, D.A.; Crans, D.C.; Silva, W.E.; Belian, M.F.; Lira, E.C. Dexamethasone-induced insulin resistance attenuation by oral sulfur–oxidovanadium(IV) complex treatment in mice. Pharmaceuticals 2024, 17, 760. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C. Antidiabetic, chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases. J. Org. Chem. 2015, 80, 11899–11915. [Google Scholar] [CrossRef] [PubMed]
- Lyonnet, B.; Martz, X.; Martin, E. L’emploi thérapeutique des dérivés du vanadium. La Presse Médicale 1899, 32, 191–192. [Google Scholar]
- Rehder, D. Vanadium. Its role for humans. In Interrelations Between Essential Metal Ions and Human Diseases, 1st ed.; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer Nature: Dordrecht, The Netherlands, 2013; Volume 1, pp. 139–169. [Google Scholar]
- Heyliger, C.E.; Tahiliani, A.G.; McNeil, J.H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 1985, 227, 1474–1477. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, D.; Liu, P.; Wei, T.; Zhang, F.; Ding, W. Oxidovanadium(IV) sulfate-induced glucose uptake in HepG2 cells through IR/Akt pathway and hydroxyl radicals. J. Inorg. Biochem. 2015, 149, 39–44. [Google Scholar] [CrossRef]
- Begum, A.; Vani, K.; Husain, A.; Chinnagalla, T.; Kumar, M.P.; Swapna, S.; Ayodhya, D.; Shaik, A. A comprehensive review of anti-diabetic activity of vanadium-based complexes via PTP-1B inhibition mechanism. Res. Chem. 2023, 6, 101154. [Google Scholar] [CrossRef]
- Bhanot, S.; Michoulas, A.; McNeill, J.H. Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats. Mol. Cell. Biochem. 1995, 153, 205–209. [Google Scholar] [CrossRef]
- McNeill, J.H.; Yuen, V.G.; Hoveyda, H.R.; Orvig, C. Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J. Med. Chem. 1992, 35, 1489–1491. [Google Scholar] [CrossRef]
- Dinu, V.; Kilic, A.; Wang, Q.; Ayed, C.; Fadel, A.; Harding, S.E.; Yakubov, G.E.; Fisk, I.D. Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour. npj Sci. Food 2020, 4, 15. [Google Scholar] [CrossRef]
- Bordbar, A.-K.; Creagh, A.L.; Mohammadi, F.; Haynes, C.A.; Orvig, C. Calorimetric studies of the interaction between the insulin-enhancing drug candidate bis(maltolato)oxovanadium(IV) (BMOV) and human serum apo-transferrin. J. Inorg. Biochem. 2009, 103, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Ramanadham, S.; Mongold, J.J.; Brownsey, R.W.; Cros, G.H.; McNeill, J.H. Oral vanadyl sulfate in the treatment of diabetes mellitus in rats. Am. J. Physiol. 1989, 257, H904–H911. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Liboiron, B.D.; Bellman, Y.S.K.D.D.; Setyawati, I.A.; Patrick, B.O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K.; Cassidy, S.B.C.; et al. Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. J. Biol. Inorg. Chem. 2003, 8, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Shechter, Y.; Goldwaser, I.; Mironchik, M.; Fridkin, M.; Gefel, D. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord. Chem. Rev. 2003, 237, 3–11. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mehdi, M.Z. Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet. Med. 2005, 22, 2–13. [Google Scholar] [CrossRef]
- Aviva Levina, A.; McLeod, A.I.; Pulte, A.; Aitken, J.B.; Lay, P.A. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg. Chem. 2015, 54, 6707–6718. [Google Scholar] [CrossRef]
- Schmid, A.C.; Byrne, R.D.; Vilar, R.; Woscholski, R. Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett. 2004, 566, 35–38. [Google Scholar] [CrossRef]
- Xiong, Z.; Xing, C.; Xu, T.; Yang, Y.; Liu, G.; Hu, G.; Cao, H.; Zhang, C.; Guo, X.; Yang, F. Vanadium induces oxidative stress and mitochondrial quality control disorder in the heart of ducks. Front. Vet. Sci. 2021, 8, 756534. [Google Scholar] [CrossRef]
- Xu, J.; Gong, G.; Huang, X.; Du, W. Schiff base oxovanadium complexes resist the assembly behavior of human islet amyloid polypeptide. J. Inorg. Biochem. 2018, 186, 60–69. [Google Scholar] [CrossRef]
- Aureliano, M.; De Sousa-Coelho, A.L.; Dolan, C.C.; Roess, D.A.; Crans, D.C. Biological consequences of vanadium effects on formation of reactive oxygen species and lipid peroxidation. Int. J. Mol. Sci. 2023, 24, 5382. [Google Scholar] [CrossRef]
- Tsave, O.; Petanidis, S.; Kioseoglou, E.; Yavropoulou, M.P.; Yovos, J.G.; Anestakis, D.; Tsepa, A.; Salifoglou, A. Role of vanadium in cellular and molecular immunology: Association with immune-related inflammation and pharmacotoxicology mechanisms. Oxid. Med. Cell. Longev. 2016, 2016, 4013639. [Google Scholar] [CrossRef] [PubMed]
- Scior, T.; Abdallah, H.H.; Mustafa, S.F.Z.; Guevara-García, J.A.; Rehder, D. Are vanadium complexes druggable against the main protease Mpro of SARS-CoV-2?—A computational approach. Inorg. Chem. Comm. 2024, 161, 112014. [Google Scholar]
- Martins, F.M.; Iglesias, B.A.; Chaves, O.A.; da Silva, J.L.G.; Leal, D.B.R.; Back, D.F. Vanadium(v) complexes derived from triphenylphosphonium and hydrazides: Cytotoxicity evaluation and interaction with biomolecules. Dalton Trans. 2024, 53, 8315–8327. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.M.; Rodruigues, J.P.L.M.; Domingues, N.S.; Bonvin, A.M.J.J.; Castro, M.M.C.A. Unveiling the interaction of vanadium compounds with human serum albumin by using 1H STD NMR and computational docking studies. Eur. J. Inorg. Chem. 2013, 26, 4619–4627. [Google Scholar] [CrossRef]
- Kondaparthy, V.; Shaik, A.; Reddy, K.B.; Das Manwal, D. Studies on interaction of vanadium metal complexes with bovine serum albumin—Fluoremetric and UV–visible spectrophotometric studies. Chem. Data Collect. 2019, 20, 100203. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Y.; Liu, H.; Gu, J.; Sun, X. Comparison of the effects on bovine serum albumin induced by different forms of vanadium. Biol. Trace Elem. Res. 2023, 201, 3088–3098. [Google Scholar] [CrossRef]
- Heinemann, G.; Fichtl, B.; Vogt, W. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. Brit. J. Clin. Pharmacol. 2003, 55, 241–245. [Google Scholar] [CrossRef]
- Heinemann, G.; Fichtl, B.; Mentler, M.; Vogt, W. Binding of vanadate to human albumin in infusion solutions, to proteins in human fresh frozen plasma, and to transferrin. J. Inorg. Biochem. 2002, 90, 38–42. [Google Scholar] [CrossRef]
- Cobbina, E.; Mehtab, S.; Correia, I.; Gonçalves, G.; Tomaz, I.; Cavaco, I.; Jakusch, T.; Enyedi, E.; Kiss, T.; Pessoa, J.C. Binding of oxovanadium(IV) complexes to blood serum albumins. J. Mex. Chem. Soc. 2013, 57, 180–191. [Google Scholar] [CrossRef]
- Sanna, D.; Bíró, L.; Buglyó, P.; Micera, G.; Garribba, E. Transport of the anti-diabetic VO2+ complexes formed by pyrone derivatives in the blood serum. J. Inorg. Biochem. 2012, 115, 87–99. [Google Scholar] [CrossRef]
- Soares, M.A.G.; Souza-Silva, F.; Alves, C.R.; Vazquez, L.; de Araujo, T.S.; Serpa, C.; Chaves, O.A. Evidence of hyperglycemic levels improving the binding capacity between human serum albumin and the antihypertensive drug hydrochlorothiazide. Sci. Pharm. 2024, 92, 32. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Fioravanço, L.P.; Porto, J.B.; Martins, F.M.; Siqueira, J.D.; Iglesias, B.A.; Rodrigues, B.M.; Chaves, O.A.; Back, D.F. A Vanadium (V) complexes derived from pyridoxal/salicylaldehyde. Interaction with CT-DNA/HSA, and molecular docking assessments. J. Inorg. Biochem. 2023, 239, 112070. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, B.; Gong, G.; Huang, X.; Du, W. Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments. J. Inorg. Biochem. 2019, 197, 110721. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Han, S.; Zhu, H.; Hu, X.; Li, X.; Hou, C.; Wu, C.; Xie, Q.; Li, N.; Du, X.; et al. The protective effect of vanadium on cognitive impairment and the neuropathology of Alzheimer’s disease in APPSwe/PS1dE9 mice. Front. Mol. Neurosci. 2020, 13, 21. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Wendimu, M.Y.; Hooks, S.B. Microglia phenotypes in aging and neurodegenerative diseases. Cells 2022, 11, 2091. [Google Scholar] [CrossRef]
- Almeida, Z.L.; Brito, R.M.M. Amyloid disassembly: What can we learn from chaperones? Biomedicines 2022, 10, 3276. [Google Scholar] [CrossRef]
- Kim, E.; Cho, S. Microglia and monocyte-derived macrophages in stroke. Neurotherapeutics 2016, 13, 702–718. [Google Scholar] [CrossRef]
- Ferrisi, R.; Gado, F.; Ricardi, C.; Polini, B.; Manera, C.; Chiellini, G. The interplay between cannabinoid receptors and microglia in the pathophysiology of Alzheimer’s disease. J. Clin. Med. 2023, 12, 7201. [Google Scholar] [CrossRef]
- Almeida, Z.L.; Brito, R.M.M. Structure and aggregation mechanisms in amyloids. Molecules 2020, 25, 1195. [Google Scholar] [CrossRef] [PubMed]
- Yenari, M.A.; Kauppinen, T.M.; Swanson, R.A. Microglial activation in stroke: Therapeutic targets. Neurotherapeutics 2010, 7, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Bent, R.; Moll, L.; Grabbe, S.; Bros, M. Interleukin-1 beta—A friend or foe in malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef]
- Grebenciucova, E.; Van Haerents, S. Interleukin 6: At the interface of human health and disease. Front. Immunol. 2023, 14, 1255533. [Google Scholar] [CrossRef]
- Culic, O.; Erakovic, V.; Parnham, M.J. Anti-inflammatory effects of macrolide antibiotics. Eur. J. Pharmacol. 2001, 429, 209–229. [Google Scholar] [CrossRef]
- Brierly, G.; Celentano, A.; Breik, O.; Moslemivayeghan, E.; Patini, R.; McCullough, M.; Yap, T. Tumour necrosis factor alpha (TNF-α) and oral squamous cell carcinoma. Cancers 2023, 15, 1841. [Google Scholar] [CrossRef]
- Jang, D.-i.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Caminero, A.; Comabella, M.; Montalban, X. Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: An ongoing story. J. Neuroimmunol. 2011, 234, 1–6. [Google Scholar] [CrossRef]
- You, K.; Gu, H.; Yuan, Z.; Xu, X. Tumor necrosis factor alpha signaling and organogenesis. Front. Cell Dev. Biol. 2021, 9, 727075. [Google Scholar] [CrossRef]
- Jaspers, I.; Samet, J.M.; Erzurum, S.; Reed, W. Vanadium-induced kappa B-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Am. J. Respir. Cell. Mol. Biol. 2000, 23, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, N.; Ma, W.Y.; Dong, Z. Vanadium induces AP-1- and NFkappB-dependent transcription activity. Int. J. Oncol. 1998, 13, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.; Arru, C.; Serra, M.; Galleri, G.; Sanna, D.; Garribba, E.; Palmieri, G.; Rozzo, C. Antiproliferative activity of vanadium compounds: Effects on the major malignant melanoma molecular pathways. Metallomics 2019, 11, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Demers, L.M.; Vallyathan, V.; Ding, M.; Lu, Y.; Castranova, V.; Shi, X. Vanadate induction of NF-κB involves IκB kinase β and SAPK/ERK kinase 1 in macrophages. J. Biol. Chem. 1999, 274, 20307–20312. [Google Scholar] [CrossRef]
- Ghalichi, F.; Saghafi-Asl, M.; Kafil, B.; Faghfouri, A.H.; Jourshari, M.R.; Naserkiadeh, A.A.; Ostadrahimi, A. Insulin receptor substrates regulation and clinical responses following vanadium-enriched yeast supplementation in obese type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Biol. Trace Elem. Res. 2023, 201, 5169–5182. [Google Scholar] [CrossRef]
- Young, K.A.; Biggins, L.; Sharpe, H.J. Protein tyrosine phosphatases in cell adhesion. Biochem. J. 2021, 478, 1061–1083. [Google Scholar] [CrossRef]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Shigley, C.; Yang, W. Protein tyrosine phosphatases in skeletal development and diseases. Bone Res. 2022, 10, 10. [Google Scholar] [CrossRef]
- Stanford, S.M.; Ahmed, V.; Barrios, A.M.; Bottini, N. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Antioxid. Redox Signal. 2014, 20, 2160–2178. [Google Scholar] [CrossRef]
- Crean, R.M.; Biler, M.; van der Kamp, M.W.; Hengge, A.C.; Kamerlin, S.C.L. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 2021, 143, 3830–3845. [Google Scholar] [CrossRef]
- Denu, J.M.; Tanner, K.G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide:? Evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998, 37, 5633–5642. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.J.; Parsons, Z.D.; Cummings, A.H.; Zhou, H.; Gates, K.S. Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects. Antioxid. Redox Signal. 2011, 15, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.-C.; Fukada, T.; Tonks, N.K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell. 2002, 9, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Groen, A.; Lemeer, S.; van der Wijk, T.; Overvoorde, J.; Heck, A.J.R.; Ostman, A.; Barford, D.; Slijper, M.; den Hertog, J. Differential Oxidation of protein-tyrosine phosphatases. J. Biol. Chem. 2005, 280, 10298–10304. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.N.; Mortensen, O.H.; Peters, G.H.; Drake, P.G.; Iversen, L.F.; Olsen, O.H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 2001, 21, 7117–7136. [Google Scholar] [CrossRef]
- Irving, E.; Stoker, A.W. Vanadium compounds as PTP inhibitors. Molecules 2017, 22, 2269. [Google Scholar] [CrossRef]
- McLauchlan, C.C.; Peters, B.J.; Willsky, G.R.; Crans, D.C. Vanadium-phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev. 2015, 301, 163–199. [Google Scholar] [CrossRef]
- Parente, J.E.; Naso, L.G.; Jori, K.; Franca, C.A.; Ferreira, A.M.C.; Williams, P.A.M.; Ferrer, E.G. In vitro experiments and infrared spectroscopy analysis of acid and alkaline phosphatase inhibition by vanadium complexes. New J. Chem. 2019, 43, 17603. [Google Scholar] [CrossRef]
- Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M.J.; Ramachandran, C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 1997, 272, 843–851. [Google Scholar] [CrossRef]
- Morinville, A.; Maysinger, D.; Shaver, A. From Vanadis to Atropos: Vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol. Sci. 1998, 19, 452–460. [Google Scholar] [CrossRef]
- Shaik, A.; Kondaparthy, V.; Aveli, R.; Vijjulatha, M.; Kanth, S.S.; Manwal, D.D. Interaction of vanadium metal complexes with protein tyrosine phosphatase-1B enzyme along with identification of active site of enzyme by molecular modeling. Inorg. Chem. Comm. 2021, 126, 108499. [Google Scholar] [CrossRef]
- Shaik, A.; Kondaparthy, V.; Aveli, R.; Vemulapalli, L.; Manwal, D.D. Vanadium metal complexes’ inhibition studies on enzyme PTP-1B and antidiabetic activity studies on Wistar rats. Appl. Organom. Chem. 2022, 36, e6710. [Google Scholar] [CrossRef]
- Krejsa, C.M.; Nadler, S.G.; Esselstyn, J.M.; Kavanagh, T.J.; Ledbetter, J.A.; Schieven, G.L. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. J. Biol. Chem. 1997, 272, 11541–11549. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.D.; Menegatti, A.C.O.; Terenzi, H.; Pereira, M.B.; Roman, D.; Rosso, E.F.; Piquini, P.C.; Iglesias, A.B.; Back, D.F. Synthesis, characterization and phosphatase inhibitory activity of dioxidovanadium(V) complexes with Schiff base ligands derived from pyridoxal and resorcinol. Polyhedron 2017, 130, 184–194. [Google Scholar] [CrossRef]
- Liu, R.; Mathieu, C.; Berthelet, J.; Zhang, W.; Dupret, J.-M.; Rodrigues Lima, F. Human protein tyrosine phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives. Int. J. Mol. Sci. 2022, 23, 7027. [Google Scholar] [CrossRef]
- Peters, K.G.; Davis, M.G.; Howard, B.W.; Pokross, M.; Rastogi, V.; Diven, C.; Greis, K.D.; Eby-Wilkens, E.; Maier, M.; Evdokimov, A.; et al. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J. Inorg. Biochem. 2002, 96, 321–330. [Google Scholar] [CrossRef]
- Martins, P.G.A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.O.; Mascarello, A.; Botta, B.; Benítez, J.; Gambino, D.; Terenzi, H. Exploring oxidovanadium(IV) complexes as YopH inhibitors: Mechanism of action and modeling studies. Med. Chem. Lett. 2015, 6, 1035–1040. [Google Scholar] [CrossRef]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nature Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Romani, A.M.P. Cisplatin in cancer treatment. Biochem. Pharmacol. 2022, 206, 115323. [Google Scholar] [CrossRef]
- Tsvetkova, D.; Ivanova, S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules 2022, 27, 2466. [Google Scholar] [CrossRef]
- Gallardo-Vera, F.; Tapia-Rodriguez, M.; Diaz, D.; Van der Goes, T.F.; Montano, L.F.; Rendon-Huerta, E.P. Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways. J. Immunotox. 2018, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.P.; Videira, A.; Soares, P.; Máximo, V. Orthovanadate-induced cell death in RET/PTC1-harboring cancer cells involves the activation of caspases and altered signaling through PI3K/Akt/mTOR. Life Sci. 2011, 89, 371–377. [Google Scholar] [CrossRef]
- Haifeng, Z.; Yinghou, W.; Dan, L.; Xiuqing, S.; Furong, W. Vanadium rutin complex sensitizes breast cancer cells via modulation of p53/Bax/Bcl2/VEGF correlated with apoptotic events. Acta Pol. Pharm. 2020, 77, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Palomo, G.; Rendón-Huerta, E.P.; Montaño, L.F.; Fortoul, T.I. Vanadium compounds and cellular death mechanisms in the A549 cell line: The relevance of the compound valence. J. Appl. Toxicol. 2019, 39, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Ha, S.; Wyrzykowski, D.; Zauszkiewicz-Pawlak, A.; Inkielewicz-Stepniak, I. Selective cytotoxicity of vanadium complexes on human pancreatic ductal adenocarcinoma cell line by inducing necroptosis, apoptosis and mitotic catastrophe process. Oncotarget 2017, 8, 60324–60341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, C.; Li, J.; Shi, X. Vanadate-induced cell growth arrest is p53-dependent through activation of p21 in C141 cells. J. Inorg. Biochem. 2002, 89, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Wyrzykowski, D.; Hac, S.; Rychlowski, M.; Radomski, M.W.; Inkielewicz-Stepniak, I. New oxidovanadium(IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. Int. J. Mol. Sci. 2019, 20, 261. [Google Scholar] [CrossRef]
- Boscaro, V.; Barge, A.; Deagostino, A.; Ghibaudi, E.; Laurenti, E.; Marabello, D.; Diana, E.; Gallicchio, M. Effects of vanadyl complexes with acetylacetonate derivatives on non-tumor and tumor cell lines. Molecules 2021, 26, 5534. [Google Scholar] [CrossRef]
- Lu, L.-P.; Suo, F.Z.; Feng, Y.-L.; Song, L.-L.; Li, Y.; Li, Y.-J.; Wang, K.T. Synthesis and biological evaluation of vanadium complexes as novel anti-tumor agents. Europ. J. Med. Chem. 2019, 176, 1–10. [Google Scholar] [CrossRef]
- Sarhan, A.M.; Elsayed, S.A.; Mashaly, M.M.; El-Hendawy, A.M. Oxovanadium(IV) and ruthenium(II) carbonyl complexes of ONS-donor ligands derived from dehydroacetic acid and dithiocarbazate: Synthesis, characterization, antioxidant activity, DNA binding and in vitro cytotoxicity. Appl. Organometal. Chem. 2019, 33, e4655. [Google Scholar] [CrossRef]
- Banerjee, A.; Mohanty, M.; Lima, S.; Samanta, R.; Garribba, E.; Sasamori, T.; Dinda, R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. New J. Chem. 2020, 44, 10946. [Google Scholar] [CrossRef]
- Banerjee, A.; Patra, S.A.; Sahu, G.; Sciortino, G.; Pisanu, F.; Garribba, E.; Carvalho, M.F.N.N.; Correia, I.; Pessoa, J.C.; Reuter, H.; et al. A series of non-oxido VIV complexes of dibasic ONS donor ligands: Solution stability, chemical transformations, protein interactions, and antiproliferative activity. Inorg. Chem. 2023, 62, 7932–7953. [Google Scholar] [CrossRef] [PubMed]
- Sahu, G.; Patra, S.A.; Mohanty, M.; Lima, S.; Das Pattanayak, P.; Kaminsky, W.; Dinda, R. Dithiocarbazate based oxidomethoxidovanadium(V) and mixed-ligand oxidovanadium(IV) complexes: Study of solution behavior, DNA binding, and anticancer activity. J. Inorg. Biochem. 2022, 233, 111844. [Google Scholar] [CrossRef] [PubMed]
- Yekke-ghasemia, Z.; Takjoo, R.; Ramezanib, M.; Maguec, J.T. Molecular design and synthesis of new dithiocarbazate complexes; crystal structure, bioactivities and nano studies. RSC Adv. 2018, 8, 41795–41809. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Acunha, T.V.; Iglesias, B.A.; Jesus, C.S.H.; Serpa, C. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. J. Mol. Liq. 2020, 301, 112466. [Google Scholar] [CrossRef]
- Soares, M.A.G.; de Aquino, P.A.; Costa, T.; Serpa, C.; Chaves, O.A. Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide. Int. J. Biol. Macromol. 2024, 265, 131148. [Google Scholar] [CrossRef]
- Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 2005, 57, 787–796. [Google Scholar] [CrossRef]
- Costa-Tuna, A.; Chaves, O.A.; Almeida, Z.L.; Cunha, R.S.; Pina, J.; Serpa, C. Profiling the interaction between human serum albumin and clinically relevant HIV reverse transcriptase inhibitors. Viruses 2024, 16, 491. [Google Scholar] [CrossRef]
- Naveenraj, S.; Anandan, S. Binding of serum albumins with bioactive substances—Nanoparticles to drugs. J. Photochem. Photobiol. C 2013, 14, 53–71. [Google Scholar] [CrossRef]
- Chaves, O.A.; Iglesias, B.A.; Serpa, C. Biophysical characterization of the interaction between a transport human plasma protein and the 5,10,15,20-tetra(pyridine-4-yl)porphyrin. Molecules 2022, 27, 5341. [Google Scholar] [CrossRef]
- Chaves, O.A.; Oliveira, C.H.C.S.; Ferreira, R.C.; Cesarin-Sobrinho, D.; Machado, A.E.H.; Netto-Ferreira, J.C. Synthetic dimethoxyxanthones bind similarly to human serum albumin compared with highly oxygenated xanthones. Chem. Phys. Imp. 2024, 8, 100411. [Google Scholar] [CrossRef]
- Chaves, O.A.; Jesus, C.S.H.; Henriques, E.S.; Brito, R.M.M.; Serpa, C. In situ ultra-fast heat deposition does not perturb the structure of serum albumin. Photochem. Photobiol. Sci. 2016, 15, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Jesus, C.S.H.; Cruz, P.F.; Sant’Anna, C.M.R.; Brito, R.M.M.; Serpa, C. Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 169, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.A.; Bakheit, A.H.; Abounassif, M.A.; Zargar, S. Study of interactions of an anticancer drug neratinib with bovine serum albumin: Spectroscopic and molecular docking approach. Front. Chem. 2018, 6, 47. [Google Scholar] [CrossRef]
- Chaves, O.A.; Loureiro, R.J.S.; Serpa, C.; Cruz, P.F.; Ferreira, A.B.B.; Netto-Ferreira, J.C. Increasing the polarity of β-lapachone does not affect its binding capacity with bovine plasma protein. Int. J. Biol. Macromol. 2024, 263, 130279. [Google Scholar] [CrossRef]
- Wardell, M.; Wang, Z.; Ho, J.X.; Robert, J.; Ruker, F.; Ruble, J.; Carter, D.C. The atomic structure of human methemalbumin at 1.9 A. Biochem. Biophys. Res. Commun. 2002, 291, 913–918. [Google Scholar] [CrossRef]
- Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. 2012, D68, 1278–1289. [Google Scholar] [CrossRef]
- Guizado, T.R.C. Analysis of the structure and dynamics of human serum albumin. J. Mol. Modell. 2014, 20, 2450. [Google Scholar] [CrossRef]
- Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J. Mol. Liq. 2022, 356, 119042. [Google Scholar] [CrossRef]
- Acunha, T.V.; Chaves, O.A.; Iglesias, B.A. Fluorescent pyrene moiety in fluorinated C6F5-corroles increases the interaction with HSA and CT-DNA. J. Porphyr. Phthalocyanines 2021, 25, 75–94. [Google Scholar] [CrossRef]
- Costa-Tuna, A.; Chaves, O.A.; Loureiro, R.J.S.; Pinto, S.; Pina, J.; Serpa, C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024, 225, 128210. [Google Scholar] [CrossRef] [PubMed]
- Paz, E.R.S.; Isoppo, V.G.; dos Santos, F.S.; Machado, L.A.; de Freitas, R.P.; Junior, H.C.S.; Chaves, O.A.; Iglesias, B.A.; Rodembusch, F.S.; Júnior, E.N.S. Imidazole-based optical sensors as a platform for bisulfite sensing and BSA/HSA interaction study. An experimental and theoretical investigation. J. Mol. Liq. 2023, 387, 122666. [Google Scholar] [CrossRef]
- Chaves, O.A.; Loureiro, R.J.S.; Costa-Tuna, A.; Almeida, Z.L.; Pina, J.; Brito, R.M.M.; Serpa, C. Interaction of two comercial azobenzene food dyes, amaranth and new coccine, with human serum albumin: Biophysical characterization. ACS Food Sci. Technol. 2023, 3, 955–968. [Google Scholar] [CrossRef]
- Gelamo, E.L.; Silva, C.H.T.P.; Imasato, H.; Tabak, M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: Spectroscopy and modelling. Biochim. Biophys. Acta 2002, 1594, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Hein, K.L.; Kragh-Hansen, U.; Morth, J.P.; Jeppesen, M.D.; Otzen, D.; Moller, J.V.; Nissen, P. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 2010, 171, 353–36033. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.M.; Siqueira, J.D.; Iglesias, B.A.; Chaves, O.A.; Back, D.F. Pyridoxal water-soluble cobalt(II) helicates: Synthesis, structural analysis, and interactions with biomacromolecules. J. Inorg. Biochem. 2022, 233, 111854. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, C.H.; Chaves, O.A.; Marques, A.C.; Rosa, N.M.P.; Costa, L.A.S.; Iglesias, B.A. Synthesis, photophysics, computational approaches, and biomolecule interactive studies of metalloporphyrins containing pyrenyl units: Influence of the metal center. Eur. J. Inorg. Chem. 2022, 12, e202200075. [Google Scholar] [CrossRef]
- Sarmento, C.O.; Pinheiro, B.F.A.; Abrahão, J.; Chaves, O.A.; Moreira, M.B.; Nikolaou, S. Interactions of a ruthenium-ketoprofen compound with human serum albumin and DNA: Insights from spectrophotometric titrations and molecular docking calculations. ChemistrySelect 2022, 7, e202104020. [Google Scholar] [CrossRef]
- Tisoco, I.; Donatoni, M.C.; Victória, H.F.V.; de Toledo, J.R.; Krambrock, K.; Chaves, O.A.; de Oliveira, K.T.; Iglesias, B.A. Photophysical, photooxidation, and biomolecule-interaction of meso-tetra(thienyl)porphyrins containing peripheral Pt(II) and Pd(II) complexes. Insights for photodynamic therapy applications. Dalton Trans. 2022, 51, 1646–1657. [Google Scholar] [CrossRef]
- Siqueira, J.D.; de Pellegrin, S.F.; Fioravanço, L.P.; Fontana, L.A.; Iglesias, B.A.; Chaves, O.A.; Back, D.F. Self-association synthesis with ortho-vanillin to promote mono- and heptanuclear complexes and their evaluation as antioxidant agents. J. Mol. Struct. 2022, 1256, 132480. [Google Scholar] [CrossRef]
- Merlino, A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord. Chem. Rev. 2023, 480, 215026. [Google Scholar] [CrossRef]
- Park, C.R.; Kim, H.Y.; Song, M.G.; Lee, Y.S.; Youn, H.; Chung, J.K.; Cheon, G.J.; Kang, K.W. Efficacy and safety of human serum albumin-cisplatin complex in U87MG xenograft mouse models. Int. J. Mol. Sci. 2020, 21, 7932. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, L.; Wu, X.; Han, Y. Efficacy evaluation of albumin-bound paclitaxel combined with carboplatin as neoadjuvant chemotherapy for primary epithelial ovarian cancer. BMC Women’s Health 2022, 22, 224. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Hattori, Y.; Tohnai, R.; Ito, S.; Kawa, Y.; Kono, Y.; Urata, Y.; Nogami, M.; Takenaka, D.; Negoro, S.; et al. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease. Ipn. J. Clin. Oncol. 2018, 48, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Ghosh, B.; Biswas, S. Human Serum Albumin-Oxaliplatin (Pt(IV)) prodrug nanoparticles with dual reduction sensitivity as effective nanomedicine for triple-negative breast cancer. Int. J. Biol. Macromol. 2024, 256, 128281. [Google Scholar] [CrossRef]
- Mayr, J.; Heffeter, P.; Groza, D.; Galvez, L.; Koellensperger, G.; Roller, A.; Alte, B.; Haider, M.; Berger, W.; Kowol, C.R.; et al. An albumin-based tumor-targeted oxaliplatin prodrug with distinctly improved anticancer activity in vivo. Chem. Sci. 2017, 8, 2241–2250. [Google Scholar] [CrossRef]
- Connolly, K.M.; Stecher, V.J.; Pruden, D.J. Effect of auranofin on plasma fibronectin, C reactive protein, and albumin levels in arthritic rats. Ann. Rheum. Dis. 1988, 47, 515–521. [Google Scholar] [CrossRef]
- Pratesi, A.; Cirri, D.; Ciofi, L.; Messori, L. Reactions of auranofin and its pseudohalide derivatives with serum albumin investigated through ESI-Q-TOF MS. Inorg. Chem. 2018, 57, 10507–10510. [Google Scholar] [CrossRef]
- Warrell, R.P., Jr.; Israel, R.; Frisone, M.; Snyder, T.; Gaynor, J.J.; Bockman, R.S. Gallium nitrate for acute treatment of cancer-related hypercalcemia. A randomized, double-blind comparison to calcitonin. Ann. Intern. Med. 1988, 108, 669–674. [Google Scholar] [CrossRef]
- Coverdale, J.P.C.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing Ruthenium Anticancer Drugs: What Have We Learnt from the Key Drug Candidates? Inorganics 2019, 7, 31. [Google Scholar] [CrossRef]
- Acunha, T.V.; Rodrigues, B.M.; da Silva, J.A.; Galindo, D.D.M.; Chaves, O.A.; da Rocha, V.N.; Piquini, P.C.; Köhler, M.H.; De Boni, L.; Iglesias, B.A. Unveiling the photophysical, biomolecule binding and photo-oxidative capacity of novel Ru(II)-polypyridyl corroles: A multipronged approach. J. Mol. Liq. 2021, 340, 117223. [Google Scholar] [CrossRef]
- Chaves, O.A.; Menezes, L.B.; Iglesias, B.A. Multiple spectroscopic and theoretical investigation of meso-tetra-(4-pyridyl)porphyrin ruthenium(II) complexes in HSA binding studies. Effect of Zn(II) in protein binding. J. Mol. Liq. 2019, 294, 111581. [Google Scholar] [CrossRef]
- Santos, F.S.; da Silveira, C.H.; Nunes, F.S.; Ferreira, D.C.; Victória, H.F.V.; Krambrock, K.; Chaves, O.A.; Rodembusch, F.S.; Iglesias, B.A. Photophysical, photodynamical, redox properties and BSA interactions of novel isomeric tetracationic peripheral palladium(ii)-bipyridyl porphyrins. Dalton Trans. 2020, 49, 16278–16295. [Google Scholar] [CrossRef] [PubMed]
- Bessega, T.; Chaves, O.; Martins, F.; Acunha, T.; Back, D.; Iglesias, B.; de Oliveira, G. Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis. Inorg. Chim. Acta 2019, 496, 119049. [Google Scholar] [CrossRef]
- Chaves, O.A.; de Oliveira, M.C.C.; de Salles, C.M.C.; Martins, F.M.; Iglesias, B.A.; Back, D.F. In vitro tyrosinase, acetylcholinesterase, and HSA evaluation of dioxidovanadium (V) complexes: An experimental and theoretical approach. J. Inorg. Biochem. 2019, 200, 110800. [Google Scholar] [CrossRef]
- Franklim, T.N.; Freire-de-Lima, L.; Chaves, O.A.; Larocque-de-Freitas, I.F.; Silva Trindade, J.D.; Netto-Ferreira, J.C.; Freire-de-Lima, C.G.; Decote-Ricardo, D.; Previato, J.O.; Mendonça-Previato, L.; et al. Design, synthesis, trypanocidal activity, and studies on human albumin interaction of novel S-alkyl-1,2,4-triazoles. J. Braz. Chem. Soc. 2019, 30, 1378–1394. [Google Scholar] [CrossRef]
- Espósito, B.P.; Najja, R. Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev. 2002, 232, 137–149. [Google Scholar] [CrossRef]
- Cho, H.; Jeon, S.I.; Ahn, C.-H.; Shim, M.K.; Kim, K. Emerging albumin-binding anticancer drugs for tumor-targeted drug delivery: Current understandings and clinical translation. Pharmaceutics 2022, 14, 728. [Google Scholar] [CrossRef]
- Santos-Rebelo, A.; Kumar, P.; Pillay, V.; Choonara, Y.E.; Eleutério, C.; Figueira, M.; Viana, A.S.; Ascensão, L.; Molpeceres, J.; Rijo, P.; et al. Development and mechanistic insight into the enhanced cytotoxic potential of parvifloron D albumin nanoparticles in EGFR-overexpressing pancreatic cancer cells. Cancers 2019, 11, 1733. [Google Scholar] [CrossRef]
- Santos, M.F.A.; Correia, I.; Oliveira, A.R.; Garribba, E.; Pessoa, J.C.; Santos-Silva, T. Vanadium Complexes as Prospective Therapeutics: Structural Characterization of a VIV Lysozyme Adduct. Eur. J. Inorg. Chem. 2014, 2, 3293–3297. [Google Scholar] [CrossRef]
- Santos, M.F.A.; Pessoa, J.C. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB). Molecules 2023, 28, 6538. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Paolillo, M.; Sciortino, G.; Garribba, E.; Merlino, A. Multiple and Variable Binding of Pharmacologically Active Bis(maltolato)oxidovanadium(IV) to Lysozyme. Inorg. Chem. 2022, 61, 16458–16467. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, M.; Ferraro, G.; Cipollone, I.; Garribba, E.; Monti, M.; Merlino, A. Unexpected in crystallo reactivity of the potential drug bis(maltolato)oxidovanadium(IV) with lysozyme. Inorg. Chem. Front. 2024, 11, 6307. [Google Scholar] [CrossRef]
- Santos, M.F.A.; Sciortino, G.; Correia, I.; Fernandes, A.C.P.; Santos-Silva, T.; Pisanu, F.; Garribba, E.; Pessoa, J.C. Binding of VIVO2+, VIVOL, VIVOL2 and VVO2L moieties to proteins: X-ray/theoretical characterization and biological implications. Chem. A Eur. J. 2022, 28, e202200105. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Tito, G.; Sciortino, G.; Garribba, E.; Merlino, A. Stabilization and binding of [V4O12]4− and unprecedented [V20O54(NO3)]n− to lysozyme upon loss of ligands and oxidation of the potential drug VIVO(acetylacetonato)2. Angew. Chem. Int. Ed. 2023, 62, e202310655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves, O.A.; Martins, F.M.; Serpa, C.; Back, D.F. The Role of Vanadium in Metallodrugs Design and Its Interactive Profile with Protein Targets. Future Pharmacol. 2024, 4, 743-774. https://doi.org/10.3390/futurepharmacol4040040
Chaves OA, Martins FM, Serpa C, Back DF. The Role of Vanadium in Metallodrugs Design and Its Interactive Profile with Protein Targets. Future Pharmacology. 2024; 4(4):743-774. https://doi.org/10.3390/futurepharmacol4040040
Chicago/Turabian StyleChaves, Otávio Augusto, Francisco Mainardi Martins, Carlos Serpa, and Davi Fernando Back. 2024. "The Role of Vanadium in Metallodrugs Design and Its Interactive Profile with Protein Targets" Future Pharmacology 4, no. 4: 743-774. https://doi.org/10.3390/futurepharmacol4040040
APA StyleChaves, O. A., Martins, F. M., Serpa, C., & Back, D. F. (2024). The Role of Vanadium in Metallodrugs Design and Its Interactive Profile with Protein Targets. Future Pharmacology, 4(4), 743-774. https://doi.org/10.3390/futurepharmacol4040040