Repurposing Terbutaline and Milrinone for Cancer Therapy: A Comprehensive Review
Abstract
1. Introduction
2. Drug Profiles
2.1. Terbutaline
2.2. Milrinone
Adverse Effects | Terbutaline | Milrinone | References |
---|---|---|---|
Cardiovascular | Tachycardia, hypotension | Hypotension, arrhythmias | [30,40] |
Metabolic | Hyperglycemia | Electrolyte imbalances | [41,42] |
Neurological | Tremors, nervousness | Headache, dizziness | [43,44] |
Hematological | N.A * | Thrombocytopenia | [45] |
Other | Nausea, muscle cramps | Nausea, increased mortality (chronic heart failure) | [46,47,48] |
3. Mechanistic Relevance in Cancer
3.1. Role of β2-Adrenergic Signaling
Influence of β2-Adrenergic Signaling on the Tumor Microenvironment
3.2. Impact of cAMP Modulation and PDE3 Inhibition
3.3. Reactive Oxygen Species (ROS) Modulation and Oxidative Stress in Cancer
4. New Potential Therapeutic Applications of Milrinone and Terbutaline
5. Combination Strategies with Existing Therapies
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010, 31, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Malakar, A.K.; Chakraborty, S. The significance of gene mutations across eight major cancer types. Mutat. Res./Rev. Mutat. Res. 2019, 781, 88–99. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Sun, Y.; Peng, A. Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, B.R.; Domingos, C.; Stefanini, A.C.B.; Henrique, T.; Polachini, G.M.; Castelo-Branco, P.; Tajara, E.H. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J. Cancer 2019, 10, 4574–4587. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.; Viswanathan, S.; Makena, S.; Kapoor, S.; Verma, D.; Raju, A.A.; Dunna, M.; Muniraj, N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers 2024, 16, 1463. [Google Scholar] [CrossRef]
- To, K.K.W.; Cho, W.C.S. Drug Repurposing for Cancer Therapy in the Era of Precision Medicine. Curr. Mol. Pharmacol. 2022, 15, 895–903. [Google Scholar] [CrossRef]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018, 175, 168–180. [Google Scholar] [CrossRef]
- Juárez-López, D.; Schcolnik-Cabrera, A. Drug Repurposing: Considerations to Surpass While Re-directing Old Compounds for New Treatments. Arch. Med. Res. 2021, 52, 243–251. [Google Scholar] [CrossRef]
- Ribeiro, E.; Vale, N. Positive Inotropic Agents in Cancer Therapy: Exploring Potential Anti-Tumor Effects. Targets 2024, 2, 137–156. [Google Scholar] [CrossRef]
- Carvajal Gonczi, C.M.; Hajiaghayi, M.; Gholizadeh, F.; Xavier Soares, M.A.; Touma, F.; Lopez Naranjo, C.; Rios, A.J.; Pozzebon, C.; Daigneault, T.; Burchell-Reyes, K.; et al. The β2-adrenergic receptor agonist terbutaline upregulates T helper-17 cells in a protein kinase A-dependent manner. Hum. Immunol. 2023, 84, 515–524. [Google Scholar] [CrossRef]
- Luo, Q.; Peng, X.; Zhang, H. Effect of terbutaline plus doxofylline on chronic obstructive pulmonary disease. Am. J. Transl. Res. 2021, 13, 6959–6965. [Google Scholar] [PubMed]
- Cole, S.W.; Sood, A.K. Molecular pathways: Beta-adrenergic signaling in cancer. Clin. Cancer Res. 2012, 18, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Chen, C.; Chen, Y.; Zhang, L.; Hu, J.; Yu, H.; Liang, M.; Fu, Q.; Huang, K. β2-adrenergic receptor promotes liver regeneration partially through crosstalk with c-met. Cell Death Dis. 2022, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Z.; Zhang, L.; Hu, X.; Wang, Z.; Ni, H.; Wang, Y.; Qin, J. Activation of β2-Adrenergic Receptor Promotes Growth and Angiogenesis in Breast Cancer by Down-regulating PPARγ. Cancer Res. Treat. 2020, 52, 830–847. [Google Scholar] [CrossRef]
- Cruickshank, J.M. Phosphodiesterase III inhibitors: Long-term risks and short-term benefits. Cardiovasc. Drugs Ther. 1993, 7, 655–660. [Google Scholar] [CrossRef]
- Evans, N. Chapter 29—Hemodynamically Based Pharmacologic Management of Circulatory Compromise in the Newborn. In Hemodynamics and Cardiology, 3rd ed.; Seri, I., Kluckow, M., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 521–534. [Google Scholar]
- Saha, S.; Li, Y.; Anand-Srivastava, M.B. Reduced levels of cyclic AMP contribute to the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 2008, 86, 190–198. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Wang, Y.; Liu, M.; Chen, H. Exploring the potential role of ADRB1 as a tumor suppressor gene and prognostic biomarker in pan-cancer analysis. Discov. Oncol. 2025, 16, 790. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Q.; Wen, X.; Fan, J.; Yuan, T.; Tong, X.; Jia, R.; Chai, P.; Fan, X. Hijacking of the nervous system in cancer: Mechanism and therapeutic targets. Mol. Cancer 2025, 24, 44. [Google Scholar] [CrossRef]
- Toivanen, K.; Murumägi, A.; Wozniak, A.; Wyns, K.; Wang, C.-C.; De Sutter, L.; Arjama, M.; Merikoski, N.; Salmikangas, S.; Youssef, O.; et al. Phosphodiesterase 3A modulators sensitize tumor cells to Bcl-xL and Bcl-2/Bcl-xL inhibitors. bioRxiv 2025. bioRxiv:2025.2004.2010.648087. [Google Scholar] [CrossRef]
- Ivanina Foureau, A.V.; Foureau, D.M.; McHale, C.C.; Guo, F.; Farhangfar, C.J.; Mileham, K.F. Phosphodiesterase Inhibition to Sensitize Non-Small-Cell Lung Cancer to Pemetrexed: A Double-Edged Strategy. Cancers 2024, 16, 2475. [Google Scholar] [CrossRef]
- Vardanyan, R.S.; Hruby, V.J. (Eds.) 11—Adrenergic (Sympathomimetic) Drugs. In Synthesis of Essential Drugs; Elsevier: Amsterdam, The Netherlands, 2006; pp. 143–159. [Google Scholar]
- Andersson, P.; Olsson, O.A.; Waldeck, B. Some problems encountered in the evaluation of new bronchodilating beta-adrenoceptor agonists. Acta Pharmacol. Toxicol. 1982, 51, 358–364. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Liang, J. Management of Respiratory Disorders and the Pharmacist’s Role: COPD. In Encyclopedia of Pharmacy Practice and Clinical Pharmacy; Babar, Z.-U.-D., Ed.; Elsevier: Oxford, UK, 2019; pp. 264–281. [Google Scholar]
- Vulliemoz, Y.; Verosky, M.; Triner, L. Effect of albuterol and terbutaline, synthetic beta adrenergic stimulants, on the cyclic 3’,5’-adenosine monophosphate system in smooth muscle. J. Pharmacol. Exp. Ther. 1975, 195, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.C.; Evald, T.; Ibsen, T.B. Terbutaline inhalations by the Turbuhaler as replacement for domiciliary nebulizer therapy in severe chronic obstructive pulmonary disease. Respir. Med. 1994, 88, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Daraghmeh, N.; Al-Omari, M.M.; Sara, Z.; Badwan, A.A.; Jaber, A.M.Y. Determination of terbutaline sulfate and its degradation products in pharmaceutical formulations using LC. J. Pharm. Biomed. Anal. 2002, 29, 927–937. [Google Scholar] [CrossRef]
- Hemmings, H.C.; Egan, T.D. (Eds.) Index. In Pharmacology and Physiology for Anesthesia, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 895–922. [Google Scholar]
- Barna, T.; Szucs, K.F.; Schaffer, A.; Mirdamadi, M.; Hajagos-Toth, J.; Gaspar, R. Combined uterorelaxant effect of magnesium sulfate and terbutaline: Studies on late pregnant rat uteri in vitro and in vivo. Acta Obstet. Gynecol. Scand. 2023, 102, 457–464. [Google Scholar] [CrossRef]
- Jartti, T.T.; Kuusela, T.A.; Kaila, T.J.; Tahvanainen, K.U.; Välimäki, I.A. The dose-response effects of terbutaline on the variability, approximate entropy and fractal dimension of heart rate and blood pressure. Br. J. Clin. Pharmacol. 1998, 45, 277–285. [Google Scholar] [CrossRef]
- Papadakos, P.J.; Koh, Y. CHAPTER 38—Respiratory Pharmacology and Aerosol Therapy. In Mechanical Ventilation; Papadakos, P.J., Lachmann, B., Visser-Isles, L., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2008; pp. 428–442. [Google Scholar]
- Yamamoto, D.L.; Hutchinson, D.S.; Bengtsson, T. Beta(2)-Adrenergic activation increases glycogen synthesis in L6 skeletal muscle cells through a signalling pathway independent of cyclic AMP. Diabetologia 2007, 50, 158–167. [Google Scholar] [CrossRef]
- Honerjäger, P. Pharmacology of bipyridine phosphodiesterase III inhibitors. Am. Heart J. 1991, 121, 1939–1944. [Google Scholar] [CrossRef]
- Cheung, P.; Yang, G.; Boden, G. Milrinone, a selective phosphodiesterase 3 inhibitor, stimulates lipolysis, endogenous glucose production, and insulin secretion. Metabolism 2003, 52, 1496–1500. [Google Scholar] [CrossRef]
- Amidon, T.M.; Parmley, W.W. Is there a role for positive inotropic agents in congestive heart failure: Focus on mortality. Clin. Cardiol. 1994, 17, 641–647. [Google Scholar] [CrossRef]
- Givertz, M.M.; Hare, J.M.; Loh, E.; Gauthier, D.F.; Colucci, W.S. Effect of Bolus Milrinone on Hemodynamic Variables and Pulmonary Vascular Resistance in Patients with Severe Left Ventricular Dysfunction: A Rapid Test for Reversibility of Pulmonary Hypertension. J. Am. Coll. Cardiol. 1996, 28, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Cuffe, M.S.; Califf, R.M.; Adams, J.; Kirkwood, F.; Benza, R.; Bourge, R.; Colucci, W.S.; Massie, B.M.; O’Connor, C.M.; Pina, I.; et al. Short-term Intravenous Milrinone for Acute Exacerbation of Chronic Heart Failure—A Randomized Controlled Trial. JAMA 2002, 287, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Koster, G.; Bekema, H.J.; Wetterslev, J.; Gluud, C.; Keus, F.; van der Horst, I.C. Milrinone for cardiac dysfunction in critically ill adult patients: A systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med. 2016, 42, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Melillo, E.; Gravino, R.; Errigo, V.; Martucci, M.L.; Caiazzo, A.; Petraio, A.; Pölzl, G.; Pacileo, G. Inotropes in Patients with Advanced Heart Failure: Not Only Palliative Care. Heart Fail. Clin. 2021, 17, 587–598. [Google Scholar] [CrossRef]
- Ginwalla, M.; Bianco, C. Inotropes in Heart Failure. In Encyclopedia of Cardiovascular Research and Medicine; Vasan, R.S., Sawyer, D.B., Eds.; Elsevier: Oxford, UK, 2018; pp. 108–118. [Google Scholar]
- Cotton, D.B.; Strassner, H.T.; Lipson, L.G.; Goldstein, D.A. The effects of terbutaline on acid base, serum electrolytes, and glucose homeostasis during the management of pre term labor. Am. J. Obstet. Gynecol. 1981, 141, 617–624. [Google Scholar] [CrossRef]
- Julian, N.; Gaugain, S.; Labeyrie, M.-A.; Barthélémy, R.; Froelich, S.; Houdart, E.; Mebazaa, A.; Chousterman, B.G. Systemic tolerance of intravenous milrinone administration for cerebral vasospasm secondary to non-traumatic subarachnoid hemorrhage. J. Crit. Care 2024, 82, 154807. [Google Scholar] [CrossRef]
- Gruetter, C.A. Terbutaline. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–4. [Google Scholar]
- Chong, L.Y.Z.; Satya, K.; Kim, B.; Berkowitz, R. Milrinone Dosing and a Culture of Caution in Clinical Practice. Cardiol. Rev. 2018, 26, 35–42. [Google Scholar] [CrossRef]
- Kikura, M.; Lee, M.K.; Safon, R.A.; Bailey, J.M.; Levy, J.H. The effects of milrinone on platelets in patients undergoing cardiac surgery. Anesth. Analg. 1995, 81, 44–48. [Google Scholar] [CrossRef]
- Givertz, M.M.; Stevenson, L.W.; Colucci, W.S. Chapter 17—Strategies for Management of Decompensated Heart Failure. In Cardiovascular Therapeutics, 3rd ed.; Antman, E.M., Givertz, M.M., Josephson, M.E., de Lemos, J., Oparil, S., Sacks, F.M., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2007; pp. 385–409. [Google Scholar]
- Packer, M.; Carver, J.R.; Rodeheffer, R.J.; Ivanhoe, R.J.; DiBianco, R.; Zeldis, S.M.; Hendrix, G.H.; Bommer, W.J.; Elkayam, U.; Kukin, M.L.; et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 1991, 325, 1468–1475. [Google Scholar] [CrossRef]
- Weiner, C.P.; Buhimschi, C.T. Drugs for Pregnant and Lactating Women, 2nd ed.; Weiner, C.P., Buhimschi, C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 1065–1140. [Google Scholar]
- Fonseca, F.V.; Raffay, T.M.; Xiao, K.; McLaughlin, P.J.; Qian, Z.; Grimmett, Z.W.; Adachi, N.; Wang, B.; Hausladen, A.; Cobb, B.A.; et al. S-nitrosylation is required for β2AR desensitization and experimental asthma. Mol. Cell 2022, 82, 3089–3102.e3087. [Google Scholar] [CrossRef]
- Chang, A.; Le, C.P.; Walker, A.K.; Creed, S.J.; Pon, C.K.; Albold, S.; Carroll, D.; Halls, M.L.; Lane, J.R.; Riedel, B.; et al. β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer. Brain Behav. Immun. 2016, 57, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, H.; MacDonald, C.R.; McCarthy, P.L.; Abrams, S.I.; Repasky, E.A. β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME. Cell Rep. 2021, 37, 109883. [Google Scholar] [CrossRef] [PubMed]
- Pérez Piñero, C.; Rivero, E.M.; Gargiulo, L.; Rodríguez, M.S.; Bruque, C.D.; Bruzzone, A.; Lüthy, I.A. Chapter Two—Adrenergic receptors in breast cancer. In Progress in Molecular Biology and Translational Science; Shukla, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 193, pp. 37–63. [Google Scholar]
- Nilsson, M.B.; Le, X.; Heymach, J.V. β-Adrenergic Signaling in Lung Cancer: A Potential Role for Beta-Blockers. J. Neuroimmune Pharmacol. 2020, 15, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Q.; Fang, T.; Yu, L.X.; Lv, G.S.; Lv, H.W.; Liang, D.; Li, T.; Wang, C.Z.; Tan, Y.X.; Ding, J.; et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J. Hepatol. 2016, 65, 314–324. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Q.; Sun, X.; Yin, Q.; Chen, J.; Xu, L.; Xu, C. β(2) -adrenergic receptor signaling drives prostate cancer progression by targeting the Sonic hedgehog-Gli1 signaling activation. Prostate 2020, 80, 1328–1340. [Google Scholar] [CrossRef]
- Shi, C.S.; Kuan, F.C.; Chin, C.C.; Li, J.M. Modulation of mitochondrial apoptosis by β2-adrenergic receptor blockage in colorectal cancer after radiotherapy: An in-vivo and in-vitro study. Am. J. Cancer Res. 2023, 13, 3741–3752. [Google Scholar]
- Kaur, M.; Holden, N.S.; Wilson, S.M.; Sukkar, M.B.; Chung, K.F.; Barnes, P.J.; Newton, R.; Giembycz, M.A. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: A role for protein kinase A. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L505–L514. [Google Scholar] [CrossRef]
- McGraw, D.W.; Liggett, S.B. Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc. Am. Thorac. Soc. 2005, 2, 292–296; discussion 292–311. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Liu, J.; Chen, J.; Wang, J.; Hua, H.; Jiang, Y. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment. J. Hematol. Oncol. 2024, 17, 5. [Google Scholar] [CrossRef]
- Vitali, E.; Peverelli, E.; Giardino, E.; Locatelli, M.; Lasio, G.B.; Beck-Peccoz, P.; Spada, A.; Lania, A.G.; Mantovani, G. Cyclic adenosine 3’-5’-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). Mol. Cell Endocrinol. 2014, 383, 193–202. [Google Scholar] [CrossRef]
- Sakakitani, S.; Podyma-Inoue, K.A.; Takayama, R.; Takahashi, K.; Ishigami-Yuasa, M.; Kagechika, H.; Harada, H.; Watabe, T. Activation of β2-adrenergic receptor signals suppresses mesenchymal phenotypes of oral squamous cell carcinoma cells. Cancer Sci. 2021, 112, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Pérez Piñero, C.; Bruzzone, A.; Sarappa, M.G.; Castillo, L.F.; Lüthy, I.A. Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br. J. Pharmacol. 2012, 166, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Calderón, D.M.; Oliveira, D.T.; Marana, A.N.; Nonogaki, S.; Carvalho, A.L.; Kowalski, L.P. Prognostic significance of beta-2 adrenergic receptor in oral squamous cell carcinoma. Cancer Biomark. 2011, 10, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Carie, A.E.; Sebti, S.M. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene 2007, 26, 3777–3788. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D.; Yang, Z.; Sun, L.; Deng, Q.; Yang, S.; Qian, L.; Guo, L.; Yu, M.; Hu, M.; et al. Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocr. Relat. Cancer 2014, 21, 783–795. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Cheng, C.; Bi, M.; Li, J.; Cong, J.; Wang, X. Social isolation promotes tumor immune evasion via β2-adrenergic receptor. Brain Behav. Immun. 2025, 123, 607–618. [Google Scholar] [CrossRef]
- Satilmis, H.; Verheye, E.; Vlummens, P.; Oudaert, I.; Vandewalle, N.; Fan, R.; Knight, J.M.; De Beule, N.; Ates, G.; Massie, A.; et al. Targeting the β(2)-adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J. Pathol. 2023, 259, 69–80. [Google Scholar] [CrossRef]
- Lorenc, P.; Sikorska, A.; Molenda, S.; Guzniczak, N.; Dams-Kozlowska, H.; Florczak, A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed. Pharmacother. 2024, 180, 117585. [Google Scholar] [CrossRef]
- Stephens, O.R.; Weiss, K.; Frimel, M.; Rose, J.A.; Sun, Y.; Asosingh, K.; Farha, S.; Highland, K.B.; Prasad, S.V.N.; Erzurum, S.C. Interdependence of hypoxia and β-adrenergic receptor signaling in pulmonary arterial hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L369–L380. [Google Scholar] [CrossRef]
- Gargiulo, L.; Copsel, S.; Rivero, E.M.; Galés, C.; Sénard, J.M.; Lüthy, I.A.; Davio, C.; Bruzzone, A. Differential β2-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines. Oncotarget 2014, 5, 10058–10069. [Google Scholar] [CrossRef]
- Pullar, C.E.; Isseroff, R.R. Beta 2-adrenergic receptor activation delays dermal fibroblast-mediated contraction of collagen gels via a cAMP-dependent mechanism. Wound Repair. Regen. 2005, 13, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Sorriento, D.; Trimarco, B.; Iaccarino, G. Adrenergic mechanism in the control of endothelial function. Transl. Med. UniSa 2011, 1, 213–228. [Google Scholar] [PubMed]
- Lorton, D.; Bellinger, D.L.; Schaller, J.A.; Shewmaker, E.; Osredkar, T.; Lubahn, C. Altered sympathetic-to-immune cell signaling via β2-adrenergic receptors in adjuvant arthritis. Clin. Dev. Immunol. 2013, 2013, 764395. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.S.; Nackley, A.G.; Satterfield, K.; Maixner, W.; Diatchenko, L.; Flood, P.M. Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal 2007, 19, 251–260. [Google Scholar] [CrossRef]
- Newman, W.H.; Castresana, M.R.; Webb, J.G.; Wang, Z.; Warejcka, D.J. Stimulation of beta-adrenergic receptors inhibits the release of tumor necrosis factor-alpha from the isolated rat heart. Crit. Care Med. 2000, 28, 3593–3598. [Google Scholar] [CrossRef]
- Kolmus, K.; Tavernier, J.; Gerlo, S. β2-Adrenergic receptors in immunity and inflammation: Stressing NF-κB. Brain Behav. Immun. 2015, 45, 297–310. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Du, X.; Ou, X.; Song, T.; Zhang, W.; Cong, F.; Zhang, S.; Xiong, Y. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp. Biol. Med. 2015, 240, 1472–1479. [Google Scholar] [CrossRef]
- Menon, B.; Singh, M.; Singh, K. Matrix metalloproteinases mediate beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. Am. J. Physiol. Cell Physiol. 2005, 289, C168–C176. [Google Scholar] [CrossRef]
- Hua, H.; Li, M.; Luo, T.; Yin, Y.; Jiang, Y. Matrix metalloproteinases in tumorigenesis: An evolving paradigm. Cell Mol. Life Sci. 2011, 68, 3853–3868. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ajmal, I.; Hui, X.; Chen, Y.; Ren, Y.; Jiang, W. β2-Adrenergic Receptor Mediated Inhibition of T Cell Function and Its Implications for CAR-T Cell Therapy. Int. J. Mol. Sci. 2023, 24, 12837. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, S.C.; Park, S.H. Norepinephrine stimulates M2 macrophage polarization via β2-adrenergic receptor-mediated IL-6 production in breast cancer cells. Biochem. Biophys. Res. Commun. 2024, 741, 151087. [Google Scholar] [CrossRef] [PubMed]
- Vida, C.; Portilla, Y.; Murga, C. Adrenergic modulation of neutrophil and macrophage functions: Pathophysiological cues. Curr. Opin. Physiol. 2024, 41, 100780. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Alghamdi, A.A.A.; Islam, S.U.; Lee, J.S.; Lee, Y.S. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022, 11, 2020. [Google Scholar] [CrossRef]
- Insel, P.A.; Zhang, L.; Murray, F.; Yokouchi, H.; Zambon, A.C. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol. 2012, 204, 277–287. [Google Scholar] [CrossRef]
- Kwon, G.; Pappan, K.L.; Marshall, C.A.; Schaffer, J.E.; McDaniel, M.L. cAMP Dose-dependently Prevents Palmitate-induced Apoptosis by Both Protein Kinase A- and cAMP-Guanine Nucleotide Exchange Factor-dependent Pathways in β-Cells*. J. Biol. Chem. 2004, 279, 8938–8945. [Google Scholar] [CrossRef]
- Dávila-Esqueda, M.E.; Martínez-Morales, F. Pentoxifylline diminishes the oxidative damage to renal tissue induced by streptozotocin in the rat. Exp. Diabesity Res. 2004, 5, 245–251. [Google Scholar] [CrossRef]
- An, Z.M.; Dong, X.G.; Guo, Y.; Zhou, J.L.; Qin, T. Effects and clinical significance of pentoxifylline on the oxidative stress of rats with diabetic nephropathy. J. Huazhong Univ. Sci. Technol. Med. Sci. 2015, 35, 356–361. [Google Scholar] [CrossRef]
- Kim, S.; Jee, K.; Kim, D.; Koh, H.; Chung, J. Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1. J. Biol. Chem. 2001, 276, 12864–12870. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Pollock, C.; Steen, H.; Shaw, P.E.; Mischak, H.; Kolch, W. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol. Cell Biol. 2002, 22, 3237–3246. [Google Scholar] [CrossRef]
- Taurin, S.; Sandbo, N.; Qin, Y.; Browning, D.; Dulin, N.O. Phosphorylation of β-Catenin by Cyclic AMP-dependent Protein Kinase. J. Biol. Chem. 2006, 281, 9971–9976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mahoney, E.; Zuo, T.; Manchanda, P.K.; Davuluri, R.V.; Kirschner, L.S. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies. PLoS ONE 2014, 9, e109523. [Google Scholar] [CrossRef] [PubMed]
- Hayat, M.A. Chapter 1—Introduction to Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Volume 7. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat, M.A., Ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 1–53. [Google Scholar]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Li, R.; Wang, M.; Zhou, K.; He, C.; Wei, Q.; Qian, Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm. Sin. B 2024, 14, 5106–5131. [Google Scholar] [CrossRef]
- Chen, R.; Lai, U.H.; Zhu, L.; Singh, A.; Ahmed, M.; Forsyth, N.R. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front. Cell Dev. Biol. 2018, 6, 132. [Google Scholar] [CrossRef]
- Chen, A.; Huang, H.; Fang, S.; Hang, Q. ROS: A “booster” for chronic inflammation and tumor metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189175. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, S.; Yang, L.; Song, P.; Liu, Z.; Liu, X.; Yan, X.; Dong, Q. Roles of reactive oxygen species in inflammation and cancer. MedComm 2024, 5, e519. [Google Scholar] [CrossRef]
- Lingappan, K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Sorriento, D. Oxidative Stress and Inflammation in Cancer. Antioxidants 2024, 13, 1403. [Google Scholar] [CrossRef] [PubMed]
- Galvan, D.L.; Danesh, F.R. β2-adrenergic receptors in inflammation and vascular complications of diabetes. Kidney Int. 2017, 92, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, V.; Mele, L.; Panda, S.K.; Sanchez-Pajares, I.R.; Mosca, L.; Tirino, V.; Barbieri, M.; Bruzzese, F.; Luciano, A.; Marino, F.Z.; et al. β2-AR inhibition enhances EGFR antibody efficacy hampering the oxidative stress response machinery. Cell Death Dis. 2023, 14, 613. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med. 2001, 7, 987–989. [Google Scholar] [CrossRef]
- Follin-Arbelet, V.; Hofgaard, P.O.; Hauglin, H.; Naderi, S.; Sundan, A.; Blomhoff, R.; Bogen, B.; Blomhoff, H.K. Cyclic AMP induces apoptosis in multiple myeloma cells and inhibits tumor development in a mouse myeloma model. BMC Cancer 2011, 11, 301. [Google Scholar] [CrossRef]
- Naderi, S.; Blomhoff, H.K. Activation of cAMP signaling enhances Fas-mediated apoptosis and activation-induced cell death through potentiation of caspase 8 activation. Human Immunol. 2008, 69, 833–836. [Google Scholar] [CrossRef]
- Jordan, B.F.; Sonveaux, P. Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front. Pharmacol. 2012, 3, 94. [Google Scholar] [CrossRef]
- Spiller, H.A. Terbutaline. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Elsevier: New York, NY, USA, 2005; pp. 143–144. [Google Scholar]
- Hall, J.A.; Petch, M.C.; Brown, M.J. Intracoronary injections of salbutamol demonstrate the presence of functional beta 2-adrenoceptors in the human heart. Circ. Res. 1989, 65, 546–553. [Google Scholar] [CrossRef]
- Watson, J.M.; Richens, A. The effects of salbutamol and terbutaline on physiological tremor, bronchial tone and heart rate. Br. J. Clin. Pharmacol. 1974, 1, 223–227. [Google Scholar] [CrossRef]
- Francis, G.S.; Bartos, J.A.; Adatya, S. Inotropes. J. Am. Coll. Cardiol. 2014, 63, 2069–2078. [Google Scholar] [CrossRef]
- Mohammadpour, H.; MacDonald, C.R.; Qiao, G.; Chen, M.; Dong, B.; Hylander, B.L.; McCarthy, P.L.; Abrams, S.I.; Repasky, E.A. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Investig. 2019, 129, 5537–5552. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Cao, X. Nervous regulation: Beta-2-adrenergic signaling in immune homeostasis, cancer immunotherapy, and autoimmune diseases. Cancer Immunol. Immunother. 2023, 72, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, J.H.; Josefsen, D.; Blomhoff, H.K.; Levy, F.O.; Naderi, S.; Reed, J.C.; Smeland, E.B. Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1 expression. J. Cell Physiol. 1999, 180, 71–80. [Google Scholar] [CrossRef]
- Kumar, S.; Kostin, S.; Flacke, J.P.; Reusch, H.P.; Ladilov, Y. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J. Biol. Chem. 2009, 284, 14760–14768. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yokoyama, U.; Abe, T.; Kiyonari, H.; Yamashita, N.; Kato, Y.; Kurotani, R.; Sato, M.; Okumura, S.; Ishikawa, Y. Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J. Biol. Chem. 2010, 285, 24248–24259. [Google Scholar] [CrossRef]
- Dou, A.X.; Wang, X. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma. Chin. Med. J. (Engl.) 2010, 123, 95–99. [Google Scholar]
- Kim, E.J.; Juhnn, Y.S. Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-MEK-ERK (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J. Biol. Chem. 2015, 290, 9604–9613. [Google Scholar] [CrossRef]
Pathway | cAMP Effector | Effect of cAMP Modulation | References |
---|---|---|---|
PI3K/AKT | PKA, EPAC | Inhibition of AKT activation, apoptosis | [59,85,89] |
MAPK | PKA | Modulation of Raf-1/ERK, proliferation | [90] |
Wnt/β-catenin | PKA | Regulation of β-catenin, gene expression | [91,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, E.; Vale, N. Repurposing Terbutaline and Milrinone for Cancer Therapy: A Comprehensive Review. Future Pharmacol. 2025, 5, 38. https://doi.org/10.3390/futurepharmacol5030038
Ribeiro E, Vale N. Repurposing Terbutaline and Milrinone for Cancer Therapy: A Comprehensive Review. Future Pharmacology. 2025; 5(3):38. https://doi.org/10.3390/futurepharmacol5030038
Chicago/Turabian StyleRibeiro, Eduarda, and Nuno Vale. 2025. "Repurposing Terbutaline and Milrinone for Cancer Therapy: A Comprehensive Review" Future Pharmacology 5, no. 3: 38. https://doi.org/10.3390/futurepharmacol5030038
APA StyleRibeiro, E., & Vale, N. (2025). Repurposing Terbutaline and Milrinone for Cancer Therapy: A Comprehensive Review. Future Pharmacology, 5(3), 38. https://doi.org/10.3390/futurepharmacol5030038