Convection of Physical Quantities of Random Density
Abstract
:1. Introduction and Statement of Main Results
2. Conservation Laws
- (i)
- The functions are continuous.
- (ii)
- The partials are well defined and continuous.
3. Convection Equation
- (iii)
- (iv)
- (v)
- The partial exists and is continuous.
- (vi)
- .
- (vii)
- ,
- (viii)
- .
4. Generalized Solutions, Characteristic Curves, and the Initial Value Problem
- (ix)
- .
5. Two Finite-Difference Equations
- (i)
- is continuous.
- (ii)
- For every continuous function and every ,
- (x)
- is bounded.
- (xi)
- for any .
6. Taylor’s Formula with Bochner Integral Reminder for Vector-Valued Functions
- (i)
- The reminder is of order , i.e.,
- (ii)
- The reminder admits the integral representation formula
7. Examples of Initial Value Problems
7.1. Deterministic Initial Values and Generalizations
7.2. Sine Random Initial Values
7.3. Poisson Initial Values
7.4. Wiener Initial Values
8. Conclusions and Open Problems
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, G.C.; Cohen, B.G.; Plant, R.S. Statistical Mechanics and Stochastic Convective Parametrization; Preprint; DLR Institut für Physick der Atmosphäre: Wessling, Germany, 2005. [Google Scholar]
- Hermoso, A.; Holmar, V.; Plant, R.S. Potential of stochastic methods for improving convection-permitting ensemble forecasts of extreme events over the Western Mediterranean. Atmos. Res. 2021, 257, 105571. [Google Scholar] [CrossRef]
- Holm, D.D.; Pan, W. Deterministic and stochastic Euler-Boussinesq convection. Phys. D 2023, 444, 133584. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 1968, 11, 945–953. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Anomalous scalling of a randomly advected passive scalar. Phys. Rev. Lett. 1994, 72, 1016. [Google Scholar] [CrossRef] [PubMed]
- Doering, C.R.; Horsthemke, W.; Riordan, J. Nonequilibrium fluctuation-induced transport. Phys. Rev. Lett. 1994, 72, 2984. [Google Scholar] [CrossRef] [PubMed]
- Rudin, W. Functional Analysis. In International Series in Pure and Applied Mathematics, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- John, F. Partial Differential Equations. In Applied Mathematical Sciences, 4th ed.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1982; Volume 1. [Google Scholar]
- Arendt, W.; Batty, C.J.K.; Hieber, M.; Neubrander, F. Vector-valued Laplace transforms and Cauchy problems. In Monographs in Mathematics; Birkhäuser: Basel, Switzerland, 2001; Volume 96. [Google Scholar]
- Berezhovskii, A.M.; Pustovoit, M.A.; Bezrukov, S.M. Diffusion in a tube of varying cross section: Numerical study of reduction to effective one-dimensional description. J. Chem. Phys. 2007, 126, 134706. [Google Scholar] [CrossRef] [PubMed]
- Révész, S.G.; Ruzsa, I.Z. On approximating Lebesgue integrals by Riemann sums. Glasg. Math. J. 1991, 33, 129–134. [Google Scholar] [CrossRef]
- Nair, R. On Riemann sums and Lebesgue integrals. Mh. Math. 1995, 120, 49–54. [Google Scholar] [CrossRef]
- Kong, C.-Y.; Muthukumar, M. Simulation of stochastic sensing of proteins. J. Am. Chem. Soc. 2005, 127, 18252–18261. [Google Scholar] [CrossRef] [PubMed]
- Parsegian, A. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 1969, 221, 844–846. [Google Scholar] [CrossRef] [PubMed]
- Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotecnol. 2000, 18, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Cherstvy, A.G. Electrostatic screening and energy barriers of ions in low-dielectric membranes. J. Phys. Chem. B 2006, 110, 14503–14506. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, R.I.S. Perspective-challenges in biomedical analysis: From classical sensors to stochastic sensors. ECS Sens. Plus 2022, 1, 011603. [Google Scholar] [CrossRef]
- Davson, H.; Danielli, J. The Permeability of Natural Membranes; Cambridge University Press: London, UK, 1952. [Google Scholar]
- Born, M. Volumen und Hydratationswärme der Ionen. Z. Phys. 1920, 1, 45. [Google Scholar] [CrossRef]
- Stanomir, D.; Stănăşilă, O. Metode Matematice în Teoria Semnalelor; Editura Tehnică: Bucureşti, Romania, 1980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barletta, E.; Dragomir, S.; Esposito, F. Convection of Physical Quantities of Random Density. AppliedMath 2024, 4, 225-249. https://doi.org/10.3390/appliedmath4010012
Barletta E, Dragomir S, Esposito F. Convection of Physical Quantities of Random Density. AppliedMath. 2024; 4(1):225-249. https://doi.org/10.3390/appliedmath4010012
Chicago/Turabian StyleBarletta, Elisabetta, Sorin Dragomir, and Francesco Esposito. 2024. "Convection of Physical Quantities of Random Density" AppliedMath 4, no. 1: 225-249. https://doi.org/10.3390/appliedmath4010012
APA StyleBarletta, E., Dragomir, S., & Esposito, F. (2024). Convection of Physical Quantities of Random Density. AppliedMath, 4(1), 225-249. https://doi.org/10.3390/appliedmath4010012