New Harmonic Number Series
Abstract
:1. Introduction
2. Proof of Identity (1)
3. Required Identities
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndt, B.C. Ramanujan’s Notebooks, Part I; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1985. [Google Scholar]
- Alzer, H.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
- Bailey, D.H.; Borwein, J.M.; Girgensohn, R. Experimental evaluation of Euler sums. Exp. Math. 1994, 3, 17–30. [Google Scholar] [CrossRef]
- Basu, A.; Apostol, T.M. A new method for investigating Euler sums. Ramanujan J. 2000, 4, 397–419. [Google Scholar] [CrossRef]
- Borwein, D.; Borwein, J.M. On an intriguing integral and some series related to ζ(4). Proc. Amer. Math. Soc. 1995, 193, 1191–1198. [Google Scholar]
- Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 1995, 38, 277–294. [Google Scholar] [CrossRef]
- Borwein, D.; Borwein, J.M.; Bradley, D.M. Parametic Euler sum identities. J. Math. Anal. Appl. 2006, 316, 328–338. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Explicit evaluation of Euler and related sums. Ramanujan J. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Flajolet, P.; Salvy, B. Euler sums and contour integral representations. Exp. Math. 1998, 7, 15–35. [Google Scholar] [CrossRef]
- Li, A.; Qin, H. The representation of Euler sums with parameters. Integral Transforms Spec. Funct. 2019, 30, 55–82. [Google Scholar] [CrossRef]
- Nimbran, S.S.; Sofo, A. New interesting Euler sums. J. Class. Anal. 2019, 15, 9–22. [Google Scholar] [CrossRef]
- Coffey, M.W. Integral and series representations of the digamma and polygamma functions. Analysis 2012, 32, 317–337. [Google Scholar] [CrossRef]
- Coffey, M.W. On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 2005, 183, 84–100. [Google Scholar] [CrossRef]
- Alzer, H.; Karayannakis, D.; Srivastava, H.M. Series representations for some mathematical constants. J. Math. Anal. Appl. 2006, 320, 145–162. [Google Scholar] [CrossRef]
- Sofo, A.; Choi, J. Series involving polygamma functions and certain variant Euler harmonic sums. J. Class. Anal 2024, 23, 19–36. [Google Scholar] [CrossRef]
- Kölbig, K. The polygamma function ψ(x) for x = 1/4 and x = 3/4. J. Comput. Appl. Math. 1996, 75, 43–46. [Google Scholar] [CrossRef]
- Choi, J.; Cvijović, D. Values of the polygamma functions at rational arguments. J. Phys. A Math. Theor. 2007, 40, 15019–15028, Erratum in J. Phys. A Math. Theor. 2010, 43, 239801. [Google Scholar] [CrossRef]
- Adegoke, K.; Frontczak, R. Series associated with a forgotten identity of Nörlund. arXiv 2024, arXiv:2410.22343. [Google Scholar] [CrossRef]
- Sofo, A.; Srivastava, H.M. A family of shifted harmonic sums. Ramanujan J. 2015, 37, 89–108. [Google Scholar] [CrossRef]
- Guillera, J.; Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 2008, 16, 247–270. [Google Scholar] [CrossRef]
- Boyadzhiev, K.N. Power series with binomial sums and asymptotic expansions. Int. J. Math. Anal. 2014, 8, 1389–1414. [Google Scholar] [CrossRef]
- Abel, U. A short proof of the binomial identities of Frisch and Klamkin. J. Integer Seq. 2020, 23, Article 20.7.1. [Google Scholar]
- Adegoke, K.; Frontczak, R. Some notes on an identity of Frisch. Open J. Math. Sci. 2024, 8, 216–226. [Google Scholar] [CrossRef]
- Rockett, A.M. Sums of the inverses of binomial coefficients. Fibonacci Quart. 1981, 19, 433–437. [Google Scholar] [CrossRef]
- Sofo, A. General properties involving reciprocals of binomial coefficients. J. Integer Seq. 2006, 9, Article 06.4.5. [Google Scholar]
- Sofo, A. Integrals and polygamma representations for binomial sums. J. Integer Seq. 2010, 13, Article 10.2.8. [Google Scholar]
- Xu, C. Identities for the shifted harmonic numbers and binomial coefficients. Filomat 2017, 31, 6071–6086. [Google Scholar] [CrossRef]
- Xu, C.; Yan, Y.; Shi, Z. Euler sums and integrals of polylogarithmic functions. J. Number Theory 2016, 165, 84–108. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, M.; Zhu, W. Some evaluation of harmonic number sums. Integral Transforms Spec. Funct. 2016, 27, 937–955. [Google Scholar] [CrossRef]
- Boyadzhiev, K.N. New series identities with Cauchy, Stirling, and harmonic numbers, and Laguerre polynomials. J. Integer Seq. 2020, 23, 20.11.7. [Google Scholar]
- Boyadzhiev, K.N. Stirling numbers and inverse factorial series. Contrib. Math. 2023, 7, 24–33. [Google Scholar]
- Adegoke, K.; Layeni, O. New finite and infinite summation identities involving the generalized harmonic numbers. J. Anal. Number Theory 2016, 4, 49–60. [Google Scholar] [CrossRef]
- Chu, W. Infinite series identities on harmonic numbers. Results Math. 2012, 61, 209–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adegoke, K.; Frontczak, R. New Harmonic Number Series. AppliedMath 2025, 5, 21. https://doi.org/10.3390/appliedmath5010021
Adegoke K, Frontczak R. New Harmonic Number Series. AppliedMath. 2025; 5(1):21. https://doi.org/10.3390/appliedmath5010021
Chicago/Turabian StyleAdegoke, Kunle, and Robert Frontczak. 2025. "New Harmonic Number Series" AppliedMath 5, no. 1: 21. https://doi.org/10.3390/appliedmath5010021
APA StyleAdegoke, K., & Frontczak, R. (2025). New Harmonic Number Series. AppliedMath, 5(1), 21. https://doi.org/10.3390/appliedmath5010021