Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Consequences
5. Applications
5.1. Application to Differential Equations
5.2. Application to Integral Equations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Beg, I.; Sedghi, S.; Shobe, N. Fixed point theorems in fuzzy metric spaces. Int. J. Anal. 2013, 2013, 934145. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Hussain, A.; Ishtiaq, U.; Ahmed, K.; Al-Sulami, H. On pentagonal controlled fuzzy metric spaces with an application to dynamic market equilibrium. J. Funct. Spaces 2022, 2022, 5301293. [Google Scholar] [CrossRef]
- Imdad, M.; Ali, J. A general fixed point theorem in fuzzy metric spaces via an implicit function. J. Appl. Math. Inform. 2008, 26, 591–603. [Google Scholar]
- Imdad, M.; Kumar, S.; Khan, M.S. Remarks on some fixed point theorems satisfying implicit relations. Rad. Mat. 2002, 11, 135–143. [Google Scholar]
- Ishtiaq, U.; Kattan, D.A.; Ahmad, K.; Sessa, S.; Ali, F. Fixed point results in controlled fuzzy metric spaces with an application to the transformation of solar energy to electric power. Mathematics 2023, 11, 3435. [Google Scholar] [CrossRef]
- Mishra, A.K.; Bhardwaj, R.; Joshi, N.; Mathur, I. A fuzzy soft set based novel method to destabilize the terrorist network. J. Intell. Fuzzy Syst. 2022, 43, 35–48. [Google Scholar] [CrossRef]
- Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math. 1999, 32, 157–164. [Google Scholar] [CrossRef]
- Rehman, S.U.; Aydi, H. Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to fredholm integral equations. J. Funct. Spaces 2021, 2021, 5527864. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Sonam; Bhardwaj, R.; Narayan, S. Fixed point results in soft fuzzy metric spaces. Mathematics 2023, 11, 3189. [Google Scholar] [CrossRef]
- Subrahmanyam, P. A common fixed point theorem in fuzzy metric spaces. Inf. Sci. 1995, 83, 109–112. [Google Scholar] [CrossRef]
- Turkoglu, D.; Alaca, C.; Cho, Y.J.; Yildiz, C. Common fixed point theorems in intuitionistic fuzzy metric spaces. J. Appl. Math. Comput. 2006, 22, 411–424. [Google Scholar] [CrossRef]
- Zararsız, Z.; Riaz, M. Bipolar fuzzy metric spaces with application. Comput. Appl. Math. 2022, 41, 49. [Google Scholar] [CrossRef]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef]
- Basha, S.S. Best proximity points: Optimal solutions. J. Optim. Theory Appl. 2011, 151, 210–216. [Google Scholar] [CrossRef]
- Raj, V.S. A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. Theory Methods Appl. 2011, 74, 4804–4808. [Google Scholar]
- Abkar, A.; Gabeleh, M. Best proximity points of non-self mappings. Top 2013, 21, 287–295. [Google Scholar] [CrossRef]
- Abkar, A.; Moezzifar, N.; Azizi, A.; Shahzad, N. Best proximity point theorems for cyclic generalized proximal contractions. Fixed Point Theory Appl. 2016, 2016, 66. [Google Scholar] [CrossRef]
- Ali, B.; Khan, A.A.; Sen, M.D.L. Optimum solutions of systems of differential equations via best proximity points in b-metric spaces. Mathematics 2023, 11, 574. [Google Scholar] [CrossRef]
- Bhandari, S.K.; Gopal, D.; Konar, P. Probabilistic α-min Ciric type contraction results using a control function. AIMS Math. 2020, 5, 1186–1198. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Konar, P.; Rhoades, B.E.; Metiya, N. Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2116–2126. [Google Scholar] [CrossRef]
- Gabeleh, M. Best proximity point theorems via proximal non-self mappings. J. Optim. Theory Appl. 2015, 164, 565–576. [Google Scholar] [CrossRef]
- Konar, P.; Chandok, S.; Dutta, S.; Sen, M.D.L. Coupled optimal results with an application to nonlinear integral equations. Axioms 2021, 10, 73. [Google Scholar] [CrossRef]
- Sarkar, D.; Chandok, S.; Konar, P.; Bhardwaj, R.; Choudhary, P.R.S. Coupling, optimization and the effect of binary relation. J. Anal. 2023, 31, 1081–1100. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Kumam, P. Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- Gordji, M.E.; Ramezani, M.; Sen, M.D.L.; Cho, Y.J. On orthogonal sets and banach fixed point theorem. Fixed Point Theory 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Hezarjaribi, M. Fixed point result in orthogonal fuzzy metric space. Jordan J. Math. Stat. 2018, 11, 295–308. [Google Scholar]
- Ishtiaq, U.; Javed, K.; Uddin, F.; Sen, M.D.L.; Ahmed, K.; Ali, M.U. Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, 2021, 2809657. [Google Scholar] [CrossRef]
- Olia, Z.E.D.D.; Gordji, M.E.; Bagha, D.E. Banach fixed point theorem on orthogonal cone metric spaces. Facta Univ. Ser. Math. Inform. 2020, 35, 1239–1250. [Google Scholar]
- Uddin, F.; Park, C.; Javed, K.; Arshad, M.; Lee, J.R. Orthogonal m-metric spaces and an application to solve integral equations. Adv. Differ. Equ. 2021, 2021, 159. [Google Scholar] [CrossRef]
- Althaf, M.M.; Gani, A.N. Fixed point theorems in orthogonal fuzzy metric spaces using altering distance function. Adv. Appl. Math. Sci. 2021, 20, 1175–1185. [Google Scholar]
- Javed, K.; Asif, A.; Savas, E. A note on orthogonal fuzzy metric space, its properties, and fixed point theorems. J. Funct. Spaces 2022, 2022, 5863328. [Google Scholar] [CrossRef]
- Sessa, S.; Jahangeer, F.; Kattan, D.A.; Ishtiaq, U. Development of fixed point results for αΓ-F-fuzzy contraction mappings with applications. Symmetry 2023, 15, 1300. [Google Scholar] [CrossRef]
- Sonam; Rathore, V.; Pal, A.; Bhardwaj, R.; Narayan, S. Fixed-point results for mappings satisfying implicit relation in orthogonal fuzzy metric spaces. Adv. Fuzzy Syst. 2023, 2023, 5037401. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonam; Sarkar, D.; Bhardwaj, P.; Narayan, S.; Bhardwaj, R. Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings. AppliedMath 2025, 5, 108. https://doi.org/10.3390/appliedmath5030108
Sonam, Sarkar D, Bhardwaj P, Narayan S, Bhardwaj R. Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings. AppliedMath. 2025; 5(3):108. https://doi.org/10.3390/appliedmath5030108
Chicago/Turabian StyleSonam, Deb Sarkar, Purvee Bhardwaj, Satyendra Narayan, and Ramakant Bhardwaj. 2025. "Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings" AppliedMath 5, no. 3: 108. https://doi.org/10.3390/appliedmath5030108
APA StyleSonam, Sarkar, D., Bhardwaj, P., Narayan, S., & Bhardwaj, R. (2025). Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings. AppliedMath, 5(3), 108. https://doi.org/10.3390/appliedmath5030108