Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells
Abstract
:1. Introduction
2. Pushing PV Technologies Forward: Receiving Optical Data Using Solar Cells in the Context of IoT and Optical Wireless Communication
2.1. First Proof of Concept
2.2. Harvesting Energy and Data Using Silicon-Based and Thin Films PV Technologies
2.3. Harvesting Energy and Data Using Emerging PV Technologies
2.4. Lessons Learned on the Trade-Off between Energy Harvesting and Data Reception: Operating Point Dependence
2.5. Considerations on the Influence of Illumination Conditions and Ambient Noise
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renewables 2021—Analysis and Forecast to 2026; International Energy Agency: Paris, France, 2021; p. 175.
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar Photovoltaics Is Ready to Power a Sustainable Future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Study: Levelized Cost of Electricity—Renewable Energy Technologies—Fraunhofer ISE. Available online: https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html (accessed on 21 June 2022).
- Timilsina, G.R. Are Renewable Energy Technologies Cost Competitive for Electricity Generation? Renew. Energy 2021, 180, 658–672. [Google Scholar] [CrossRef]
- Almora, O.; Baran, D.; Bazan, G.C.; Berger, C.; Cabrera, C.I.; Catchpole, K.R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; et al. Device Performance of Emerging Photovoltaic Materials (Version 2). Adv. Energy Mater. 2021, 11, 2102526. [Google Scholar] [CrossRef]
- Bae, S.-H.; Zhao, H.; Hsieh, Y.-T.; Zuo, L.; De Marco, N.; Rim, Y.S.; Li, G.; Yang, Y. Printable Solar Cells from Advanced Solution-Processible Materials. Chem 2016, 1, 197–219. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic Solar Cell Technologies: Analysing the State of the Art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Liu, H.; Yu, M.-H.; Lee, C.-C.; Yu, X.; Li, Y.; Zhu, Z.; Chueh, C.-C.; Li, Z.; Jen, A.K.-Y. Technical Challenges and Perspectives for the Commercialization of Solution-Processable Solar Cells. Adv. Mater. Technol. 2021, 6, 2000960. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Q.; Gao, J.; Wang, J.; Xu, C.; Ma, X.; Zhang, F. Recent Progress of Organic Photovoltaics with Efficiency over 17%. Energies 2021, 14, 4200. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Lett. 2021, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A.S.; Liu, J.; Harrison, G.T.; Nugraha, M.I.; Eswaran, M.K.; Babics, M.; et al. Damp Heat–Stable Perovskite Solar Cells with Tailored-Dimensionality 2D/3D Heterojunctions. Science 2022, 376, 73–77. [Google Scholar] [CrossRef]
- Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C. Charge Yield Potential of Indoor-Operated Solar Cells Incorporated into Product Integrated Photovoltaic (PIPV). Renew. Energy 2011, 36, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Kim, H. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12, 1338. [Google Scholar] [CrossRef]
- Li, M.; Igbari, F.; Wang, Z.-K.; Liao, L.-S. Indoor Thin-Film Photovoltaics: Progress and Challenges. Adv. Energy Mater. 2020, 10, 2000641. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-K.; Chen, Y.; Chow, P.C.Y.; Zhang, G.; Huang, J.; Ma, C.; Zhang, J.; Yin, H.; Hong Cheung, A.M.; Wong, K.S.; et al. High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule 2020, 4, 1486–1500. [Google Scholar] [CrossRef]
- Dong, C.; Li, X.-M.; Ma, C.; Yang, W.-F.; Cao, J.-J.; Igbari, F.; Wang, Z.-K.; Liao, L.-S. Lycopene-Based Bionic Membrane for Stable Perovskite Photovoltaics. Adv. Funct. Mater. 2021, 31, 2011242. [Google Scholar] [CrossRef]
- Hou, B.; Kim, B.-S.; Lee, H.K.H.; Cho, Y.; Giraud, P.; Liu, M.; Zhang, J.; Davies, M.L.; Durrant, J.R.; Tsoi, W.C.; et al. Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance. Adv. Funct. Mater. 2020, 30, 2004563. [Google Scholar] [CrossRef]
- Guo, J.; Min, J. A Cost Analysis of Fully Solution-Processed ITO-Free Organic Solar Modules. Adv. Energy Mater. 2019, 9, 1802521. [Google Scholar] [CrossRef]
- Song, Z.; McElvany, C.L.; Phillips, A.B.; Celik, I.; Krantz, P.W.; Watthage, S.C.; Liyanage, G.K.; Apul, D.; Heben, M.J. A Technoeconomic Analysis of Perovskite Solar Module Manufacturing with Low-Cost Materials and Techniques. Energy Environ. Sci. 2017, 10, 1297–1305. [Google Scholar] [CrossRef]
- Qiu, L.; Ono, L.K.; Qi, Y. Advances and Challenges to the Commercialization of Organic–Inorganic Halide Perovskite Solar Cell Technology. Mater. Today Energy 2018, 7, 169–189. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Wang, X.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Chen, Q. Cost Analysis of Perovskite Tandem Photovoltaics. Joule 2018, 2, 1559–1572. [Google Scholar] [CrossRef] [Green Version]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A.G. Environmental Impacts of Solar Energy Systems: A Review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Stranks, S.D.; You, F. Life Cycle Assessment of Recycling Strategies for Perovskite Photovoltaic Modules. Nat. Sustain. 2021, 4, 821–829. [Google Scholar] [CrossRef]
- Anctil, A.; Lee, E.; Lunt, R.R. Net Energy and Cost Benefit of Transparent Organic Solar Cells in Building-Integrated Applications. Appl. Energy 2020, 261, 114429. [Google Scholar] [CrossRef]
- Venkateswararao, A.; Ho, J.K.W.; So, S.K.; Liu, S.-W.; Wong, K.-T. Device Characteristics and Material Developments of Indoor Photovoltaic Devices. Mater. Sci. Eng. R Rep. 2020, 139, 100517. [Google Scholar] [CrossRef]
- Li, B.; Hou, B.; Amaratunga, G.A.J. Indoor Photovoltaics, the Next Big Trend in Solution-Processed Solar Cells. InfoMat 2021, 3, 445–459. [Google Scholar] [CrossRef]
- Cutting, C.L.; Bag, M.; Venkataraman, D. Indoor Light Recycling: A New Home for Organic Photovoltaics. J. Mater. Chem. C 2016, 4, 10367–10370. [Google Scholar] [CrossRef]
- Freunek, M.; Freunek, M.; Reindl, L.M. Maximum Efficiencies of Indoor Photovoltaic Devices. IEEE J. Photovolt. 2013, 3, 59–64. [Google Scholar] [CrossRef]
- Ho, J.K.W.; Yin, H.; So, S.K. From 33% to 57%—An Elevated Potential of Efficiency Limit for Indoor Photovoltaics. J. Mater. Chem. A 2020, 8, 1717–1723. [Google Scholar] [CrossRef]
- Mathews, I.; Kantareddy, S.N.; Buonassisi, T.; Peters, I.M. Technology and Market Perspective for Indoor Photovoltaic Cells. Joule 2019, 3, 1415–1426. [Google Scholar] [CrossRef]
- Politi, B.; Parola, S.; Gademer, A.; Pegart, D.; Piquemil, M.; Foucaran, A.; Camara, N. Practical PV Energy Harvesting under Real Indoor Lighting Conditions. Sol. Energy 2021, 224, 3–9. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Alkhalayfeh, M.A.; Abdul Aziz, A.; Pakhuruddin, M.Z.; Katubi, K.M.M.; Ahmadi, N. Recent Development of Indoor Organic Photovoltaics. Phys. Status Solidi 2022, 219, 2100639. [Google Scholar] [CrossRef]
- Muhammad, B.T.; Kar, S.; Stephen, M.; Leong, W.L. Halide Perovskite-Based Indoor Photovoltaics: Recent Development and Challenges. Mater. Today Energy 2022, 23, 100907. [Google Scholar] [CrossRef]
- Internet of Things (IoT) Market (2021–26) | Industry Size, Growth, Trends—Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry (accessed on 19 October 2021).
- Ma, D.; Lan, G.; Hassan, M.; Hu, W.; Das, S.K. Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1222–1250. [Google Scholar] [CrossRef]
- Pecunia, V.; Occhipinti, L.G.; Hoye, R.L.Z. Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things. Adv. Energy Mater. 2021, 11, 2100698. [Google Scholar] [CrossRef]
- Sanislav, T.; Mois, G.D.; Zeadally, S.; Folea, S.C. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access 2021, 9, 39530–39549. [Google Scholar] [CrossRef]
- Panidi, J.; Georgiadou, D.G.; Schoetz, T.; Prodromakis, T. Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Adv. Funct. Mater. 2022, 32, 2200694. [Google Scholar] [CrossRef]
- Reb, L.K.; Böhmer, M.; Predeschly, B.; Grott, S.; Weindl, C.L.; Ivandekic, G.I.; Guo, R.; Dreißigacker, C.; Gernhäuser, R.; Meyer, A.; et al. Perovskite and Organic Solar Cells on a Rocket Flight. Joule 2020, 4, 1880–1892. [Google Scholar] [CrossRef]
- Cho, S.; Jung, D.; Kim, J.; Seo, J.; Ju, H.; Lee, J. Ultrathin GaAs Photovoltaic Arrays Integrated on a 1.4 mm Polymer Substrate for High Flexibility, a Lightweight Design, and High Specific Power. Adv. Mater. Technol. 2022, 7, 2200344. [Google Scholar] [CrossRef]
- Schubert, M.B.; Werner, J.H. Flexible Solar Cells for Clothing. Mater. Today 2006, 9, 42–50. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.-Y.; Lu, Z.-H. Review and Perspective of Materials for Flexible Solar Cells. Mater. Rep. Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
- Aslam, A.; Mehmood, U.; Arshad, M.H.; Ishfaq, A.; Zaheer, J.; Ul Haq Khan, A.; Sufyan, M. Dye-Sensitized Solar Cells (DSSCs) as a Potential Photovoltaic Technology for the Self-Powered Internet of Things (IoTs) Applications. Sol. Energy 2020, 207, 874–892. [Google Scholar] [CrossRef]
- Michaels, H.; Rinderle, M.; Freitag, R.; Benesperi, I.; Edvinsson, T.; Socher, R.; Gagliardi, A.; Freitag, M. Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: Towards Autonomous Smart Sensors for the Internet of Things. Chem. Sci. 2020, 11, 2895–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainville, M.; Leclerc, M. Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 2020, 5, 1186–1197. [Google Scholar] [CrossRef]
- Cui, Y.; Hong, L.; Hou, J. Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Appl. Mater. Interfaces 2020, 12, 38815–38828. [Google Scholar] [CrossRef] [PubMed]
- Jahandar, M.; Kim, S.; Lim, D.C. Indoor Organic Photovoltaics for Self-Sustaining IoT Devices: Progress, Challenges and Practicalization. ChemSusChem 2021, 14, 3449–3474. [Google Scholar] [CrossRef]
- Mathews, I.; Kantareddy, S.N.R.; Sun, S.; Layurova, M.; Thapa, J.; Correa-Baena, J.-P.; Bhattacharyya, R.; Buonassisi, T.; Sarma, S.; Peters, I.M. Self-Powered Sensors Enabled by Wide-Bandgap Perovskite Indoor Photovoltaic Cells. Adv. Funct. Mater. 2019, 29, 1904072. [Google Scholar] [CrossRef] [Green Version]
- Polyzoidis, C.; Rogdakis, K.; Kymakis, E. Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Adv. Energy Mater. 2021, 11, 2101854. [Google Scholar] [CrossRef]
- Olzhabay, Y.; Ng, A.; Ukaegbu, I.A. Perovskite PV Energy Harvesting System for Uninterrupted IoT Device Applications. Energies 2021, 14, 7946. [Google Scholar] [CrossRef]
- Thomas, S.K.; Pockett, A.; Seunarine, K.; Spence, M.; Raptis, D.; Meroni, S.; Watson, T.; Jones, M.; Carnie, M.J. Will the Internet of Things Be Perovskite Powered? Energy Yield Measurement and Real-World Performance of Perovskite Solar Cells in Ambient Light Conditions. IoT 2022, 3, 109–121. [Google Scholar] [CrossRef]
- Tartagni, M.; Belleville, M.; Cantatore, E.; Fanet, H. Energy Autonomous Systems: Future Trends in Devices, Technology, and Systems; CATRENE: Paris, France, 2009; ISBN 978-88-904399-0-2. [Google Scholar]
- Mumtaz, S.; Jornet, J.M.; Aulin, J.; Gerstacker, W.H.; Dong, X.; Ai, B. Terahertz Communication for Vehicular Networks. IEEE Trans. Veh. Technol. 2017, 66, 5617–5625. [Google Scholar] [CrossRef] [Green Version]
- Ziar, H.; Manganiello, P.; Isabella, O.; Zeman, M. Photovoltatronics: Intelligent PV-Based Devices for Energy and Information Applications. Energy Environ. Sci. 2021, 14, 106–126. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Jungnickel, V.; Hinrichs, M.; Bober, K.L.; Kottke, C.; Corici, A.A.; Emmelmann, M.; Rufo, J.; Bök, P.; Behnke, D.; Riege, M.; et al. Enhance Lighting for the Internet of Things. In Proceedings of the 2019 Global LIFI Congress (GLC), Paris, France, 12–13 June 2019; pp. 1–6. [Google Scholar]
- Hamza, A.; Tripp, T. Optical Wireless Communication for the Internet of Things: Advances, Challenges, and Opportunities. TechRxiv 2020. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Alves, L.N.; Zvanovec, S.; Khalighi, M.-A. Visible Light Communications: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-6754-5. [Google Scholar]
- Kim, S.; Won, J.; Nahm, S. Simultaneous Reception of Solar Power and Visible Light Communication Using a Solar Cell. Opt. Eng. 2014, 53, 046103. [Google Scholar] [CrossRef]
- Wang, Z.; Tsonev, D.; Videv, S.; Haas, H. Towards Self-Powered Solar Panel Receiver for Optical Wireless Communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 3348–3353. [Google Scholar]
- Wang, Z.; Tsonev, D.; Videv, S.; Haas, H. On the Design of a Solar-Panel Receiver for Optical Wireless Communications With Simultaneous Energy Harvesting. IEEE J. Sel. Areas Commun. 2015, 33, 1612–1623. [Google Scholar] [CrossRef]
- Lee, S.H. A Passive Transponder for Visible Light Identification Using a Solar Cell. IEEE Sens. J. 2015, 15, 5398–5403. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Bishnu, A.; Das, S.K.; Soni, M.; Bhatia, V. Comparative Analysis of Low Cost Photodetectors for Visible Light Communication. In Proceedings of the International Symposium on Advanced Networks and Telecommunication Systems, ANTS, Indore, India, 16–19 December 2018. [Google Scholar] [CrossRef]
- Diamantoulakis, P.D.; Karagiannidis, G.K.; Ding, Z. Simultaneous Lightwave Information and Power Transfer (SLIPT). IEEE Trans. Green Commun. Netw. 2018, 2, 764–773. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, F.; Li, H.; Zhou, F.; Wang, Y.; Li, S. Simultaneous Lightwave Information and Power Transfer in Visible Light Communication Systems. IEEE Trans. Wirel. Commun. 2019, 18, 5818–5830. [Google Scholar] [CrossRef]
- Pan, G.; Diamantoulakis, P.D.; Ma, Z.; Ding, Z.; Karagiannidis, G.K. Simultaneous Lightwave Information and Power Transfer: Policies, Techniques, and Future Directions. IEEE Access 2019, 7, 28250–28257. [Google Scholar] [CrossRef]
- Uysal, M.; Ghasvarianjahromi, S.; Karbalayghareh, M.; Diamantoulakis, P.D.; Karagiannidis, G.K.; Sait, S.M. SLIPT for Underwater Visible Light Communications: Performance Analysis and Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 6715–6728. [Google Scholar] [CrossRef]
- Filho, J.I.D.O.; Alkhazragi, O.; Trichili, A.; Ooi, B.S.; Alouini, M.-S.; Salama, K.N. Simultaneous Lightwave and Power Transfer for Internet of Things Devices. Energies 2022, 15, 2814. [Google Scholar] [CrossRef]
- Alamu, O.; Olwal, T.O.; Djouani, K. Simultaneous Lightwave Information and Power Transfer in Optical Wireless Communication Networks: An Overview and Outlook. Optik 2022, 266, 169590. [Google Scholar] [CrossRef]
- Sarwar, R.; Sun, B.; Kong, M.; Ali, T.; Yu, C.; Cong, B.; Xu, J. Visible Light Communication Using a Solar-Panel Receiver. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar]
- Malik, B.; Zhang, X. Solar Panel Receiver System Implementation for Visible Light Communication. In Proceedings of the 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Cairo, Egypt, 6–9 December 2015; pp. 502–503. [Google Scholar]
- Shin, W.-H.; Yang, S.-H.; Kwon, D.-H.; Han, S.-K. Self-Reverse-Biased Solar Panel Optical Receiver for Simultaneous Visible Light Communication and Energy Harvesting. Opt. Exp. 2016, 24, A1300–A1305. [Google Scholar] [CrossRef] [PubMed]
- Kadirvelu, S.; Leon-Salas, W.D.; Fan, X.; Kim, J.; Peleato, B.; Mohammadi, S.; Vijayalakshmi, B. A Circuit for Simultaneous Reception of Data and Power Using a Solar Cell. IEEE Trans. Green Commun. Netw. 2021, 5, 2065–2075. [Google Scholar] [CrossRef]
- Wu, J.-T.; Chow, C.-W.; Liu, Y.; Hsu, C.-W.; Yeh, C.-H. Performance Enhancement Technique of Visible Light Communications Using Passive Photovoltaic Cell. Opt. Commun. 2017, 392, 119–122. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wu, J.-T.; Chow, C.-W.; Liu, Y.; Yeh, C.-H.; Liao, X.-L.; Lin, K.-H.; Wu, W.-L.; Chen, Y.-Y. Using Pre-Distorted PAM-4 Signal and Parallel Resistance Circuit to Enhance the Passive Solar Cell Based Visible Light Communication. Opt. Commun. 2018, 407, 245–249. [Google Scholar] [CrossRef]
- Das, S.; Fakidis, J.; Sparks, A.; Poves, E.; Videv, S.; Haas, H. Towards 100 Mb/s Optical Wireless Communications Using a Silicon Photovoltaic Receiver. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Bialic, E.; Maret, L.; Kténas, D. Specific Innovative Semi-Transparent Solar Cell for Indoor and Outdoor LiFi Applications. Appl. Opt. 2015, 54, 8062–8069. [Google Scholar] [CrossRef]
- Lorrière, N.; Bialic, E.; Pasquinelli, M.; Chabriel, G.; Barrère, J.; Escoubas, L.; Simon, J. An OFDM Testbed for LiFi Performance Characterization of Photovoltaic Modules. In Proceedings of the 2018 Global LIFI Congress (GLC), Paris, France, 8–9 February 2018; pp. 1–5. [Google Scholar]
- Sindhubala, K.; Vijayalakshmi, B. Receiver Intend to Reduce Ambient Light Noise in Visible-Light Communication Using Solar Panels. J. Eng. Sci. Technol. Rev. 2017, 10, 84–90. [Google Scholar] [CrossRef]
- Fakidis, J.; Videv, S.; Helmers, H.; Haas, H. 0.5-Gb/s OFDM-Based Laser Data and Power Transfer Using a GaAs Photovoltaic Cell. IEEE Photonics Technol. Lett. 2018, 30, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Fakidis, J.; Helmers, H.; Haas, H. Simultaneous Wireless Data and Power Transfer for a 1-Gb/s GaAs VCSEL and Photovoltaic Link. IEEE Photonics Technol. Lett. 2020, 32, 1277–1280. [Google Scholar] [CrossRef]
- Kong, M.; Lin, J.; Kang, C.H.; Shen, C.; Guo, Y.; Sun, X.; Sait, M.; Weng, Y.; Zhang, H.; Ng, T.K.; et al. Toward Self-Powered and Reliable Visible Light Communication Using Amorphous Silicon Thin-Film Solar Cells. Opt. Exp. 2019, 27, 34542. [Google Scholar] [CrossRef] [PubMed]
- Majlesein, B.; Guerra, V.; Rabadan, J.; Rufo, J.; Perez-Jimenez, R. Evaluation of Communication Link Performance and Charging Speed in Self-Powered Internet of Underwater Things Devices. IEEE Access 2022, 10, 100566–100575. [Google Scholar] [CrossRef]
- Lei, W.; Chen, Z.; Xu, Y.; Jiang, C.; Lin, J.; Fang, J. Negatively Biased Solar Cell Optical Receiver for Underwater Wireless Optical Communication System With Low Peak Average Power Ratio. IEEE Photonics J. 2022, 14, 3186702. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.-Y.; Liang, K.; Hsu, C.-W.; Chow, C.-W.; Yeh, C.-H. Visible Light Communication Using Receivers of Camera Image Sensor and Solar Cell. IEEE Photonics J. 2016, 8, 2507364. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Wu, J.-T.; Wang, H.-Y.; Chow, C.-W.; Lee, C.-H.; Chu, M.-T.; Yeh, C.-H. Visible Light Positioning and Lighting Based on Identity Positioning and RF Carrier Allocation Technique Using a Solar Cell Receiver. IEEE Photonics J. 2016, 8, 2590945. [Google Scholar] [CrossRef]
- Carrascal, C.; Demirkol, I.; Paradells, J. On-Demand Sensor Node Wake-up Using Solar Panels and Visible Light Communication. Sensors 2016, 16, 418. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Poves, E.; Fakidis, J.; Sparks, A.; Videv, S.; Haas, H. Towards Energy Neutral Wireless Communications: Photovoltaic Cells to Connect Remote Areas. Energies 2019, 12, 3772. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, S. Handbook of Photovoltaic Science and Engineering; Wiley Online Library: Hoboken, NJ, USA, 2003; ISBN 0-471-49196-9. [Google Scholar]
- Lorrière, N.; Bétrancourt, N.; Pasquinelli, M.; Chabriel, G.; Barrère, J.; Escoubas, L.; Wu, J.-L.; Bermudez, V.; Ruiz, C.M.; Simon, J.-J. Photovoltaic Solar Cells for Outdoor LiFi Communications. J. Lightwave Technol. 2020, 38, 3822–3831. [Google Scholar] [CrossRef]
- Sepehrvand, S.; Theagarajan, L.N.; Hranilovic, S. Rate-Power Trade-Off in Simultaneous Lightwave Information and Power Transfer Systems. IEEE Commun. Lett. 2021, 25, 1249–1253. [Google Scholar] [CrossRef]
- Chen, S.; Liu, L.; Chen, L.-K. On the Nonlinear Distortion Characterization in Photovoltaic Modules for Visible Light Communication. IEEE Photonics Technol. Lett. 2021, 33, 1467–1470. [Google Scholar] [CrossRef]
- Das, S.; Sparks, A.; Poves, E.; Videv, S.; Fakidis, J.; Haas, H. Effect of Sunlight on Photovoltaics as Optical Wireless Communication Receivers. J. Lightwave Technol. 2021, 39, 6182–6190. [Google Scholar] [CrossRef]
- Arredondo, B.; Romero, B.; Pena, J.M.S.; Fernández-Pacheco, A.; Alonso, E.; Vergaz, R.; De Dios, C. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector. Sensors 2013, 13, 12266–12276. [Google Scholar] [CrossRef] [Green Version]
- Vega-Colado, C.; Arredondo, B.; Torres, J.C.; López-Fraguas, E.; Vergaz, R.; Martín-Martín, D.; Del Pozo, G.; Romero, B.; Apilo, P.; Quintana, X.; et al. An All-Organic Flexible Visible Light Communication System. Sensors 2018, 18, 3045. [Google Scholar] [CrossRef] [Green Version]
- López-Fraguas, E.; Arredondo, B.; Vega-Colado, C.; del Pozo, G.; Najafi, M.; Martín-Martín, D.; Galagan, Y.; Sánchez-Pena, J.M.; Vergaz, R.; Romero, B. Visible Light Communication System Using an Organic Emitter and a Perovskite Photodetector. Org. Electron. 2019, 73, 292–298. [Google Scholar] [CrossRef]
- Zhang, S.; Tsonev, D.; Videv, S.; Ghosh, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic Solar Cells as High-Speed Data Detectors for Visible Light Communication. Optica 2015, 2, 607. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L.; Yu, L.P.; Liang, Y.Y.; et al. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138. [Google Scholar] [CrossRef]
- He, Z.; Zhong, C.; Huang, X.; Wong, W.Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells. Adv. Mater. 2011, 23, 4636–4643. [Google Scholar] [CrossRef] [PubMed]
- Heremans, P.; Tripathi, A.K.; de Jamblinne de Meux, A.; Smits, E.C.P.; Hou, B.; Pourtois, G.; Gelinck, G.H. Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications. Adv. Mater. 2016, 28, 4266–4282. [Google Scholar] [CrossRef] [PubMed]
- ASCA® | The Photovoltaic Solution That Unlocks Your Imagination. Available online: https://www.asca.com/ (accessed on 22 November 2022).
- Lorriere, N.; Chabriel, G.; Barrere, J.; Pasquinelli, M.; Pic, G.; Vannieuwenhuyse, N.; Escoubas, L.; Simon, J.-J. LiFi Reception from Organic Photovoltaic Modules Subject to Additional DC Illuminations and Shading Effects. In Proceedings of the 2019 Global LIFI Congress (GLC), Paris, France, 12–13 June 2019; IEEE: Manhattan, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Hofer, J.; Groenewolt, A.; Jayathissa, P.; Nagy, Z.; Schlueter, A. Parametric Analysis and Systems Design of Dynamic Photovoltaic Shading Modules. Energy Sci. Eng. 2016, 4, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Mica, N.A.; Bian, R.; Manousiadis, P.; Jagadamma, L.K.; Tavakkolnia, I.; Haas, H.; Turnbull, G.A.; Samuel, I.D.W. Triple-Cation Perovskite Solar Cells for Visible Light Communications. Photonics Res. 2020, 8, A16. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakkolnia, I.; Jagadamma, L.K.; Bian, R.; Manousiadis, P.P.; Videv, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic Photovoltaics for Simultaneous Energy Harvesting and High-Speed MIMO Optical Wireless Communications. Light Sci. Appl. 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X. Inverted Organic Photovoltaic Cells. Chem. Soc. Rev. 2016, 45, 2937–2975. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material Insights and Challenges for Non-Fullerene Organic Solar Cells Based on Small Molecular Acceptors. Nat. Energy 2018, 3, 720–731. [Google Scholar] [CrossRef]
- Li, P.; Lu, Z.-H. Interface Engineering in Organic Electronics: Energy-Level Alignment and Charge Transport. Small Sci. 2021, 1, 2000015. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2102730. [Google Scholar] [CrossRef]
- Hawashin, H.; Karthick, S.; Ratier, B.; Trigaud, T.; Bouclé, J. Perovskite solar cells as energy harvesters and data receivers for visible light communications (VLC). In Proceedings of the 6ème e-Journées Pérovskites Halogénées, Palaiseau, France, 31 March–2 April 2021. [Google Scholar]
- Hawashin, H.; Moline, B.; Julien-Vergonjanne, A.; Sahuguede, S.; Antony, R.; Trigaud, T.; Bouclé, J. Application of Inverted Organic Solar Cells for Energy Harvesting and Visible Light Communications (VLC). In Proceedings of the 6ème Colloque Francophone PLUridisciplinaire sur les Matériaux, l’Environnement et l’Electronique, Limoges, France, 10–12 April 2019. [Google Scholar]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2003; ISBN 978-1-86094-349-2. [Google Scholar]
- Weddell, A.S.; Merrett, G.V.; Al-Hashimi, B.M. Ultra Low-Power Photovoltaic MPPT Technique for Indoor and Outdoor Wireless Sensor Nodes. In Proceedings of the Design, Automation and Test in Europe, Grenoble, France, 14–18 March 2011; pp. 905–908. [Google Scholar] [CrossRef] [Green Version]
PV Technology | 1 Sun Efficiency (STC) * | Indoor Efficiency ** | Illumination | Reference |
---|---|---|---|---|
Monocrystalline Si | 26.1% | ~6% | 1000 Lux LED | [12] |
Polycrystalline Si | 23.3% | ~4% | 1000 Lux LED | [12] |
CIGS | 23.4% | 9.4% | 1000 Lux FL | [13] |
Amorphous Si | 14.0% | 19–21% | 1000 Lux LED | [14] |
GaAs | 29.1% | 19% | 580 Lux LED | [14] |
Dye-sensitized | 13.0% | 31.8% | 1000 Lux FL | [15] |
OPV | 18.2% | 31.0% | 1650 Lux LED | [16] |
Perovskites | 25.7% | 40.2% | 1000 Lux FL | [17] |
Quantum dot solar cells | 18.1% | 19.5% | 2000 Lux FL | [18] |
Ref | Illumination | Receiver Type Active Area | Experiment Conditions | Energy Harvesting Performance (PCE and Output Power) | Communication Performance (Bandwidth and Data Rate) | Particularity |
---|---|---|---|---|---|---|
[61] 2014 | Solar + White LED | Si cell 7.29 cm2 | Indoor LOS SISO 40 cm | 16% PCE 43.81 mW | 10 kHz 3 kbit/s | First proof of concept |
[62] 2014 | White LED | Si module 432 cm2 | Indoor LOS SISO 24 cm | 2.1 mW | 350 kHz 7.01 Mbit/s | First proof of concept using one source to send data and energy |
[63] 2015 | White LED | Si module 432 cm2 | Indoor LOS SISO | 30 mW | 350 kHz 11.84 Mbit/s | First circuit for simultaneous data reception and energy harvesting |
[64] 2015 | White LED array | Si module 181.5 cm2 | Indoor LOS SISO Real-life context 1 m | Supply the reception circuit | 15 kHz 4.8 kbit/s | First real-life scenario SLIPT system |
[90] 2016 | White LED | α-Si module 9.36 cm2 | Indoor LOS SISO Real-life context 60 cm | Supply the reception circuit | 2 kbit/s | Performance comparison with photodiode |
[75] 2016 | White LED | Si module 42.35 cm2 | Indoor LOS SISO 10 cm | 26% PCE | 120 kHz 17.05 Mbit/s | First self-biased architecture |
[89] 2016 | 3 White LEDs | α-Si cell 27.1 cm2 | Indoor LOS MISO ~2 m | Autonomous receiver | 2 kbit/s | Only positioning system with PV receiver |
[77] 2017 | 2 White LEDs | α-Si cell 27.1 cm2 | Indoor LOS SISO 1.5 m | N/A | 1 Mbit/s | First use of pre-distortion to improve PV receiver performance |
[83] 2018 | Infrared laser | GaAs cell 0.78 mm2 | Indoor LOS SISO 2 m | 42% PCE 1.5 mW (obtained over 1 mm) | 24.5 MHz 522.1 Mbit/s | Proof of concept of high communication performance for small surface PV device |
[81] 2018 | White LED | CIGS and α-Si modules | Indoor LOS SISO | N/A | Bandwidth analysis | Illumination and material influence on the bandwidth |
[85] 2019 | Solar + White laser | α-Si module 144 cm2 | Indoor Outdoor LOS SISO 20 m | 474 mW (solar power) | 290 kHz 1 Mbit/s | Include first underwater scenario |
[91] 2019 | Solar + Infrared laser | Si module 667.08 cm2 | Outdoor LOS SISO Real-life context 30 m | 12.5% PCE 5 W | 270 kHz 8 Mbit/s | First PV-based system for internet under real-world conditions |
[84] 2020 | Infrared laser | GaAs cell 0.78 mm2 | Indoor LOS SISO 40 cm | 41.7% PCE 0.98 mW | 24.5 MHz 1041 Mb/s | Record data rate at SLIPT scenario |
[93] 2020 | Solar + While LED | CIGS module 26.05 cm2 | Outdoor LOS SISO 23 cm | N/A | Error-free maximum frequency analysis | Comparison between PD and CIGS PV in outdoor scenario |
[94] * 2021 | White LED | Si module 100 cm2 | Indoor LOS SISO | Theoretical values | Capacity bound analysis | Optimization procedure according to receiver battery status |
[95] 2021 | White LED | Si module | Indoor LOS SISO 1 m | N/A | Multiple performance for multiple light intensity | First characterization of the non-linear aspect of PV devices |
[76] 2021 | Red LED | GaAs cell 9 cm2 | Indoor LOS SISO 32.5 cm | 347 µW | 2.5 kbit/s | Dense analysis of the reception circuit |
[96] 2021 | Solar + Infrared laser | Si module 667.08 cm2 | Indoor LOS SISO 3.5 m | 4.5 W | 6.34 Mbit/s | First use of double diode model for communication analysis |
PCE (White LED) | Bandwidth (MHz) | Harvested Power (mW) | Data Rate (Mbit/s) | |
---|---|---|---|---|
PTB7:PC71BM | --- | 1.32 | 3.3 | 90.3 |
PTB7-Th:PC71BM | 10.9% | 1.26 | 3.5 | 78.4 |
PTB7-Th:EH-IDTBR | 14.1% | 2.77 | 3.7 | 147.5 |
Ref | Illumination | Receiver Type Active Area | Experiment Conditions | Energy Harvesting Performance (PCE and Output Power) | Communication Performance (Bandwidth and Data Rate) | Particularity |
---|---|---|---|---|---|---|
[100] 2015 | Red laser | OPV cell 8 mm2 | Indoor LOS SISO 1 m | 0.43 mW | 1.3 MHz 42.3 Mbit/s | First SLIPT system with OPV |
[105] 2019 | White LED | OPV module 57.2 cm2 | Indoor LOS SISO | N/A | Bandwidth analysis | Shadowing influence on the bandwidth |
[107] 2020 | White LED + Red laser | Perovskite cell 6.5 mm2 | Indoor LOS SISO 40 cm | 21.4% PCE (LED) 3.3 mW (laser) | 586 kHz 56 Mb/s | Active layer thickness influence on communication parameters |
[109] 2021 | White LED + Visible laser | OPV cell 10 mm2 40 mm2 (MIMO) | Indoor LOS SISO MIMO 40 cm | 14% PCE (LED) 10.9 mW (laser) | 2.77 MHz 363 Mbit/s (MIMO) | Record data rate at SLIPT scenario with OPV and active layer material comparison |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouclé, J.; Ribeiro Dos Santos, D.; Julien-Vergonjanne, A. Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells. Solar 2023, 3, 161-183. https://doi.org/10.3390/solar3010011
Bouclé J, Ribeiro Dos Santos D, Julien-Vergonjanne A. Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells. Solar. 2023; 3(1):161-183. https://doi.org/10.3390/solar3010011
Chicago/Turabian StyleBouclé, Johann, Daniel Ribeiro Dos Santos, and Anne Julien-Vergonjanne. 2023. "Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells" Solar 3, no. 1: 161-183. https://doi.org/10.3390/solar3010011
APA StyleBouclé, J., Ribeiro Dos Santos, D., & Julien-Vergonjanne, A. (2023). Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells. Solar, 3(1), 161-183. https://doi.org/10.3390/solar3010011