Nutrient and Antinutrient Composition of Pleurotus ostreatus Grown on Different Substrates †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Mushroom Cultivation
2.2. Percentage Yield/Biological Efficiency
2.3. Determination of Proximate Composition
2.4. Determination of Minerals and Vitamins Composition of the Mushrooms
2.5. Determination of Anti-Nutrients
2.6. Statistical Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frischen, J.; Meza, I.; Rupp, D.; Wietler, K.; Hagenlocher, M. Drought risk to agricultural systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability. Sustainability 2020, 12, 752. [Google Scholar] [CrossRef] [Green Version]
- Muswati, C.; Simango, K.; Tapfumaneyi, L.; Mutetwa, M.; Ngezimana, W. The Effects of Different Substrate Combinations on Growth and Yield of Oyster Mushroom (Pleurotus ostreatus). Int. J. Agron. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Peter, O.E.; Peter, G.R.; Obele, I.I.; Owuna, G.; Danladi, M.M.; Obiekieze, S.; Akwashiki, O. Utilization of Some Agro-Wastes for Cultivation of Pluerotus ostreatus (Oyster Mushroom) in Keffi Nigeria. Front. Environ. Microbiol. 2019, 5, 60–69. [Google Scholar] [CrossRef]
- Atila, F.; Tuzel, Y.; Fernández, J.A.; Cano, A.F.; Sen, F. The effect of some agro-industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Sci. Hortic. 2018, 238, 246–254. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.L.; Wang, C.H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Xu, F.; Li, Z.; Zhao, S.; Song, S.; Rong, C.; Geng, X.; Liu, Y. Scientia Horticulturae The spent mushroom substrates of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci. Hortic. 2015, 186, 217–222. [Google Scholar] [CrossRef]
- Kinge, T.R.; Adi, E.M.; Mih, A.M.; Ache, N.A.; Nji, T.M. Effect of substrate on the growth, nutritional and bioactive components of Pleurotus ostreatus and Pleurotus florida. Afr. J. Biotechnol. 2016, 15, 1476–1486. [Google Scholar] [CrossRef]
- Atila, F. Compositional changes in lignocellulosic content of some agro-wastes during the production cycle of shiitake mushroom. Sci. Hortic. 2019, 245, 263–268. [Google Scholar] [CrossRef]
- Thongklang, N.; Luangharn, T. Testing agricultural wastes for the production of Pleurotus ostreatus. Mycosphere 2016, 7, 766–772. [Google Scholar] [CrossRef]
- Chiejina, N.V.; Osibe, D.A. Oil palm fruit fibre promotes the yield and quality of Lentinus squarrosulus (Mont.) Singer, an edible Nigerian mushroom. African J. Biotechnol. 2015, 14, 1195–1200. [Google Scholar] [CrossRef]
- Tarko, D.B.; Sirna, A.M. Substrate optimization for cultivation of Pleurotus ostreatus on lignocellulosic wastes (coffee, sawdust, and sugarcane bagasse) in Mizan–Tepi University, Tepi Campus, Tepi Town. J. Appl. Biol. Biotechnol. 2018, 6, 14–20. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- Pearson, D.; Cox, H.E. The Chemical Analysis of Foods, 7th ed.; Churchill Livingstone: London, UK, 1976; ISBN 0443014116. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Munro, A.B. Oxalate in Nigerian vegetables. West Afr. J. Biol. Appl. Chem. 2000, 12, 14–18. [Google Scholar]
- Lolas, G.M.; Markakis, P. Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 1975, 23, 13–15. [Google Scholar] [CrossRef]
- Maxson, E.D.; Rooney, L. Evaluation of methods for tannin analysis in sorghum grain. Cereal Chem. 1972, 49, 719–729. [Google Scholar]
- Fekadu, H.; Fekadu, B.; Desse, G. Effect of Traditional Processing Methods on Nutritional Composition and Anti-nutritional Factors of Anchote (Coccinia abyssinica (lam.) Cogn) Tubers Grown in Western Ethiopia. J. Food Process. Technol. 2013, 4, 249. [Google Scholar] [CrossRef] [Green Version]
- Gemede, H.F.; Ratta, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Nutr. Food Sci. 2014, 3, 289. [Google Scholar]
- Gemede, H.F.; Haki, G.D.; Beyene, F.; Woldegiorgis, A.Z.; Rakshit, S.K. Proximate, mineral, and antinutrient compositions of indigenous Okra (Abelmoschus esculentus) pod accessions: Implications for mineral bioavailability. Food Sci. Nutr. 2016, 4, 223–233. [Google Scholar] [CrossRef] [PubMed]
Mushroom Sample | Yield (g) | Biological Efficiency (%) |
---|---|---|
Ms/r | 1250.00 | 50 |
Mb | 250.00 | 10 |
Parameters (%) | Carbohydrate | Protein | Fat | Moisture | Fiber | Ash |
---|---|---|---|---|---|---|
Ms/r | 14.16 ± 0.23 b | 2.75 ± 0.29 a | 2.96 ± 0.06 a | 72.22 ± 0.09 a | 4.93 ± 0.08 a | 3.00 ± 0.04 b |
Mb | 8.01 ± 0.02 a | 8.43 ± 0.23 b | 2.87 ± 0.02 a | 73.98 ± 0.19 a | 4.61 ± 0.08 a | 2.12 ± 0.16 a |
Mineral (mg/100 g) | Ca | Fe | Na | K | Zn | Cl |
---|---|---|---|---|---|---|
Ms/r | 47.00 ± 9.52 a | 1.67 ± 0.26 a | 79.35 ± 1.63 b | 459.42 ± 1.37 a | 0.29 ± 0.043 a | 121.86 ± 1.64 b |
Mb | 53.04 ± 2.35 a | 1.61 ± 0.04 a | 70.15 ± 1.63 a | 574.48 ± 0.74 b | 0.32 ± 0.00 a | 108.28 ± 2.51 a |
Vitamin (mg/100 g) | Ms/r | Mb |
---|---|---|
Vit.B1 | 0.0750 ± 0.0200 a | 0.1480 ± 0.0042 b |
Vit. B2 | 0.1855 ± 0.0007 a | 0.2355 ± 0.0404 a |
Vit. B3 | 0.1450 ± 0.0212 a | 0.3900 ± 0.1131 a |
Vit D (IU) | 104.07 ± 22.96 a | 134.83 ± 25.22 b |
Anti-Nutrient (mg/100 g) | Ms/r | Mb |
---|---|---|
Phytate | 42.41 ± 3.53 a | 59.88 ± 0.01 b |
Oxalate | 78.93 ± 1.52 b | 42.5 ± 3.54 a |
Tannins | 198.04 ± 3.16 a | 203.32 ± 4.43 a |
Hemagglutinin | NIL | NIL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguchem, R.N.; Chibuogwu, C.C.; Okolo, B.O.; Oyeagu, U.; Etim, V.E.; Anaele, E.N.; Njoku, O.U. Nutrient and Antinutrient Composition of Pleurotus ostreatus Grown on Different Substrates. Biol. Life Sci. Forum 2022, 11, 69. https://doi.org/10.3390/IECPS2021-11955
Aguchem RN, Chibuogwu CC, Okolo BO, Oyeagu U, Etim VE, Anaele EN, Njoku OU. Nutrient and Antinutrient Composition of Pleurotus ostreatus Grown on Different Substrates. Biology and Life Sciences Forum. 2022; 11(1):69. https://doi.org/10.3390/IECPS2021-11955
Chicago/Turabian StyleAguchem, Rita N., Christian C. Chibuogwu, Bartholomew O. Okolo, Uchenna Oyeagu, Victoria E. Etim, Eunice N. Anaele, and Obioma U. Njoku. 2022. "Nutrient and Antinutrient Composition of Pleurotus ostreatus Grown on Different Substrates" Biology and Life Sciences Forum 11, no. 1: 69. https://doi.org/10.3390/IECPS2021-11955
APA StyleAguchem, R. N., Chibuogwu, C. C., Okolo, B. O., Oyeagu, U., Etim, V. E., Anaele, E. N., & Njoku, O. U. (2022). Nutrient and Antinutrient Composition of Pleurotus ostreatus Grown on Different Substrates. Biology and Life Sciences Forum, 11(1), 69. https://doi.org/10.3390/IECPS2021-11955