Coupling Flash Vacuum Expansion and Spray Drying to Produce Stable Polyphenolic Extract from Coffee Exocarp †
Abstract
:1. Introduction
2. Methods
2.1. Raw Material
2.2. Flash Vacuum Expansion Processing
2.3. Spray Drying Processing
2.4. Physicochemical Characterization of Powders
2.5. Statistic Analysis
3. Results
3.1. Effect of the FVE on the Total Phenol Content
3.2. Physicochemical Characterization of the Powders
3.2.1. Moisture Content and Water Activity
3.2.2. Hygroscopicity
3.2.3. Particle Size and Bulk and Tapped Densities
3.2.4. Flowability and Cohesiveness
3.2.5. Color Properties and Total Phenol Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esquivel, P.; Jimenez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Arias, C.; Rodríguez, P.; Soto, I.; Vaillant, R.; Cortés, M.; Vaillant, F. Flash-vacuum expansion, a low-cost and energy-efficient alternative process to produce high-quality fruit puree: Application to Physalis peruviana. Heliyon 2023, 9, e16969. [Google Scholar] [CrossRef]
- Marin-Castro, U.R.; Garcia-Alvarado, M.A.; Vargas-Ortiz, M.; Pallet, D.; Salgado-Cervantes, M.; Servent, A. Sensory and nutritional qualities of ‘Manila’ mango ready-to-eat puree enhanced using mild flash vacuum expansion processing. Fruits 2021, 76, 248–257. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.; Castillo-Romero, T.D.J.; Salgado-Cervantes, M.; Marin-Castro, U.R.; Vargas-Ortiz, M.; Pallet, D.; Servent, A. Review flash vacuum expansion: Effect on physicochemical, biochemical and sensory parameters in fruit processing. Food Rev. Int. 2023, 1–34. [Google Scholar] [CrossRef]
- Morel-Salmi, C.; Souquet, J.M.; Bes, M.; Cheynier, V. Effect of flash release treatment on phenolic extraction and wine composition. J. Agric. Food Chem. 2006, 54, 4270–4276. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Parra-Campos, A.; Ordóñez-Santos, L.E. Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue. Food Chem. 2019, 285, 59–66. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Santhalakshmy, S.; Bosco, S.J.D.; Francis, S.; Sabeena, M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 2015, 274, 37–43. [Google Scholar] [CrossRef]
- Carr, R.L. Evaluating flow properties of solids. Chem. Eng. 1965, 72, 163–168. [Google Scholar]
- Hausner, H.H. Friction Conditions in a Mass of Metal Powder; Polytechnic Inst. of Brooklyn: Los Angeles, CA, USA, 1967. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Kaisangsri, N.; Selamassakul, O.; Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O.; Rungruang, R. Phenolic compounds and biological activities of coffee extract for cosmetic product. SEATUC J. Sci. Eng. 2020, 1, 71–76. [Google Scholar]
- Ntuli, R.G.; Saltman, Y.; Ponangi, R.; Jeffery, D.W.; Bindon, K.; Wilkinson, K.L. Impact of skin contact time, oak and tannin addition on the chemical composition, color stability and sensory profile of Merlot wines made from flash détente treatment. Food Chem. 2023, 405, 134849. [Google Scholar] [CrossRef]
- Vargas-Ortiz, M.; Rodríguez-Jimenes, G.; Salgado-Cervantes, M.; Pallet, D. Minimally Processed Avocado Through Flash Vacuum-Expansion: Its Effect in Major Physicochemical Aspects of the Puree and Stability on Storage. J. Food Process. Preserv. 2017, 41, e12988. [Google Scholar] [CrossRef]
- Paranjpe, S.S.; Ferruzzi, M.; Morgan, M.T. Effect of a flash vacuum expansion process on grape juice yield and quality. LWT-Food Sci. Technol. 2012, 48, 147–155. [Google Scholar] [CrossRef]
- Bazaria, B.; Kumar, P. Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci. 2016, 14, 21–27. [Google Scholar] [CrossRef]
- Mahdavi, S.A.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef]
- Da Silva Carvalho, A.G.; da Costa Machado, M.T.; da Silva, V.M.; Sartoratto, A.; Rodrigues, R.A.F.; Hubinger, M.D. Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technol. 2016, 294, 421–428. [Google Scholar] [CrossRef]
- Daza, L.D.; Fujita, A.; Fávaro-Trindade, C.S.; Rodrigues-Ract, J.N.; Granato, D.; Genovese, M.I. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process. 2016, 97, 20–29. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [Google Scholar] [CrossRef]
- Ozdikicierler, O.; Dirim, S.N.; Pazir, F. The effects of spray drying process parameters on the characteristic process indices and rheological powder properties of microencapsulated plant (Gypsophila) extract powder. Powder Technol. 2014, 253, 474–480. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and arabic gum as wall matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef] [PubMed]
Analysis | MD10 | GA |
---|---|---|
Moisture (%) | 2.42 ± 0.01 a | 2.50 ± 0.01 a |
Water activity | 0.23 ± 0.02 a | 0.17 ± 0.01 b |
Bulk density (g·mL−1) | 0.249 ± 0.006 a | 0.274 ± 0.015 b |
Tapped density (g·mL−1) | 0.353 ± 0.010 a | 0.420 ± 0.024 b |
Flowability (CI) | 29.55 | 34.65 |
Cohesiveness (HR) | 1.41 | 1.53 |
Particle size (µm) | 8.61 ± 1.58 | 12.97 ± 2.40 |
Hygroscopicity (g of H2O/100 d.b.) | 13.95 ± 0.12 a | 14.69 ± 0.14 b |
Color parameters | ||
L* | 89.17 ± 0.71 a | 57.57 ± 0.80 b |
a* | 7.57 ± 0.30 a | 2.53 ± 0.02 b |
b* | 11.44 ± 0.34 a | 8.97 ± 0.08 b |
Hue angle | 56.49 ± 0.30 a | 74.23 ± 0.09 b |
Chroma | 13.72 ± 0.45 a | 9.32 ± 0.08 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin Castro, U.R.; Ortiz Sánchez, C.A.; Vargas-Ortiz, M.A.; Salgado Cervantes, M.A.; Rascón Díaz, M.P.; Servent, A.; Rivera Arredondo, V.M. Coupling Flash Vacuum Expansion and Spray Drying to Produce Stable Polyphenolic Extract from Coffee Exocarp. Biol. Life Sci. Forum 2023, 26, 116. https://doi.org/10.3390/Foods2023-14999
Marin Castro UR, Ortiz Sánchez CA, Vargas-Ortiz MA, Salgado Cervantes MA, Rascón Díaz MP, Servent A, Rivera Arredondo VM. Coupling Flash Vacuum Expansion and Spray Drying to Produce Stable Polyphenolic Extract from Coffee Exocarp. Biology and Life Sciences Forum. 2023; 26(1):116. https://doi.org/10.3390/Foods2023-14999
Chicago/Turabian StyleMarin Castro, Ubaldo Richard, César Antonio Ortiz Sánchez, Manuel Alejandro Vargas-Ortiz, Marco Antonio Salgado Cervantes, Martha Paola Rascón Díaz, Adrien Servent, and Víctor Manuel Rivera Arredondo. 2023. "Coupling Flash Vacuum Expansion and Spray Drying to Produce Stable Polyphenolic Extract from Coffee Exocarp" Biology and Life Sciences Forum 26, no. 1: 116. https://doi.org/10.3390/Foods2023-14999
APA StyleMarin Castro, U. R., Ortiz Sánchez, C. A., Vargas-Ortiz, M. A., Salgado Cervantes, M. A., Rascón Díaz, M. P., Servent, A., & Rivera Arredondo, V. M. (2023). Coupling Flash Vacuum Expansion and Spray Drying to Produce Stable Polyphenolic Extract from Coffee Exocarp. Biology and Life Sciences Forum, 26(1), 116. https://doi.org/10.3390/Foods2023-14999