Pest and Disease Impact on Tomato Genotypes in a Hedgerow System †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Experiment Design, and Plant Material
2.2. Measured and Observed Parameters
2.2.1. Insect Damage by Colorado Potato Beetle (Leptinotarsa decemlineata) and Cotton Bollworm (Helicoverpa armigera)
2.2.2. Fungal Infection by Phytophthora infestans
2.2.3. Physical Damage by Wild Animals (Rabbit (Oryctolagus cuniculus) and Roe Deer (Capreolus capreolus))
2.2.4. Harvested Fruit Number and Weight
2.3. Statistical Analysis
3. Results
3.1. Potato Beetle (Leptinotarsa decemlineata) Damage
3.2. Cotton Bollworm (Helicoverpa armigera) Damage
3.3. Fungal Damage
3.4. Wild Animal Damage
3.5. Tomato Fruit Yield Harvested in Physiological Ripening (Green and Red Stages)
3.5.1. Number of Healthy Green Fruits
3.5.2. Number of Healthy Red Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandel, D.R.; Marconi, T.G.; Badillo-Vargas, I.E.; Enciso, J.; Zapata, S.D.; Lazcano, C.A.; Crosby, K.; Avila, C.A. Yield and fruit quality of high-tunnel tomato cultivars produced during the off-season in South Texas. Sci. Hortic. 2020, 272, 109582. [Google Scholar] [CrossRef]
- Mrosso, S.E.; Ndakidemi, P.A.; Mbega, E.R. Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania. Horticulturae 2023, 9, 253. [Google Scholar] [CrossRef]
- Akino, S.; Takemoto, D.; Hosaka, K. Phytophthora infestans: A review of past and current studies on potato late blight. J. Gen. Plant Pathol. 2014, 80, 24–37. [Google Scholar] [CrossRef]
- Olaniyi, J.O.; Akanbi, W.B.; Adejumo, T.A.; Akande, O.G. Growth, fruit yield and nutritional quality of tomato varieties. Afr. J. Food Sci. 2010, 4, 398–402. [Google Scholar]
- Clark, M.S.; Ferris, H.; Klonsky, K.; Lanini, W.T.; Van Bruggen, A.H.C.; Zalom, F.G. Agronomic, economic, and environmental comparison of pest management in conventional and alternative tomato and corn systems in Northern California. Agric. Ecosyst. Environ. 1998, 68, 51–71. [Google Scholar] [CrossRef]
- Earnshaw, S. Hedgerows for California Agriculture. Inf. Técnico 2004, 95616, 1–18. [Google Scholar]
- Wang, Q.; Xu, Z.; Hu, T.; Ur Rehman, H.; Chen, H.; Li, Z.; Ding, B.; Hu, H. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut–winter vegetable agroforestry system. Nat. Prod. Res. 2014, 28, 2017–2020. [Google Scholar] [CrossRef]
- Harterreiten-Souza, É.S.; Togni, P.H.B.; Pires, C.S.S.; Sujii, E.R. The role of integrating agroforestry and vegetable planting in structuring communities of herbivorous insects and their natural enemies in the Neotropical region. Agrofor. Syst. 2014, 88, 205–219. [Google Scholar] [CrossRef]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. In New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry; Springer: Dordrecht, The Netherlands, 2004; pp. 65–78. [Google Scholar] [CrossRef]
- Boziné-Pullai, K.; Csambalik, L.; Drexler, D.; Reiter, D.; Tóth, F.; Bogdányi, F.T.; Ladányi, M. Tomato landraces are competitive with commercial varieties in terms of tolerance to plant pathogens-a case study of hungarian gene bank accessions on organic farms. Diversity 2021, 13, 195. [Google Scholar] [CrossRef]
- Kathimba, F.K.; Kimani, P.M.; Narla, R.D.; Kiirika, L.M. Characterization of tomato germplasm accessions for breeding research. J. Agric. Biotechnol. Sustain. Dev. 2021, 13, 20–27. [Google Scholar] [CrossRef]
- Belhachemi, A.; Maatoug, M.; Amirat, M.; Dehbi, A. A Study of the growth and yield of Solanum lycopersicum under greenhouses differentiated by the LDPE cover-film. Ukr. J. Ecol. 2020, 10, 69–75. [Google Scholar] [CrossRef]
- Garratt, M.P.; Senapathi, D.; Coston, D.J.; Mortimer, S.R.; Potts, S.G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 2017, 247, 363–370. [Google Scholar] [CrossRef]
- Nordey, T.; Basset-Mens, C.; De Bon, H.; Martin, T.; Déletré, E.; Simon, S.; Parrot, L.; Despretz, H.; Huat, J.; Biard, Y.; et al. Protected cultivation of vegetable crops in sub-Saharan Africa: Limits and prospects for smallholders. A review. Agron. Sustain. Dev. 2017, 37, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, M.; Adjei, J.A.; Menyhárt, L.; Csambalik, L.; Szalai, Z. Pest and Disease Impact on Tomato Genotypes in a Hedgerow System. Biol. Life Sci. Forum 2023, 27, 47. https://doi.org/10.3390/IECAG2023-15819
Mustafa M, Adjei JA, Menyhárt L, Csambalik L, Szalai Z. Pest and Disease Impact on Tomato Genotypes in a Hedgerow System. Biology and Life Sciences Forum. 2023; 27(1):47. https://doi.org/10.3390/IECAG2023-15819
Chicago/Turabian StyleMustafa, Mohammed, Joel Ayebeng Adjei, László Menyhárt, László Csambalik, and Zita Szalai. 2023. "Pest and Disease Impact on Tomato Genotypes in a Hedgerow System" Biology and Life Sciences Forum 27, no. 1: 47. https://doi.org/10.3390/IECAG2023-15819
APA StyleMustafa, M., Adjei, J. A., Menyhárt, L., Csambalik, L., & Szalai, Z. (2023). Pest and Disease Impact on Tomato Genotypes in a Hedgerow System. Biology and Life Sciences Forum, 27(1), 47. https://doi.org/10.3390/IECAG2023-15819