Can Precision Agriculture Be the Future of Indian Farming?—A Case Study across the South-24 Parganas District of West Bengal, India †
Abstract
:1. Introduction
2. Methodology
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climate Change 2007: Synthesis Report, Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovermental Panel on Climate Change; IPCC Report; IPCC: Geneva, Switzerland, 2007.
- Rosegrant, M.W.; Perez, N.; Pradesha, A.; Thomas, T.S. The Economy Wide Impacts of Climate Change on Philippine Agriculture, Research Program on Climate Change and Food Security; International Food Policy Research Institute: Washington, DC, USA, 2015. [Google Scholar]
- Kim, C.-G. Strategies for Implementing Green Growth in Agricultural Sector. In Proceedings of the Green Korea 2009 Conference, Seoul, Republic of Korea, 9 September 2009. [Google Scholar]
- Chatterjee, A. Climate Change and Indian Agriculture. 2021. Available online: https://www.devalt.org/newsletter/nov03/of_5.htm (accessed on 10 September 2023).
- Climate Change and Agriculture in India, 2016. Climate Change and Its Impact on Agriculture-MANAGE. Available online: https://www.manage.gov.in (accessed on 10 September 2023).
- District Census Handbook, South Twenty Four Parganas, Village and Town Directory, Directorate of Census Operations, West Bengal. 2011. Available online: https://censusindia.gov.in/nada/index.php/catalog/1362 (accessed on 10 September 2023).
- Dhole, M.; Topno, S. Change in climatic elements impact on agriculture: A case study on 24 PGS(S). Int. J. Health Sci. 2022, 6, 5685–5705. [Google Scholar] [CrossRef]
- West Bengal State Action Plan on Climate Change (2017–2020); Government of West Bengal: Howrah, India, 2020.
- Bazmara, M.; Jafari, S. K-Nearest Neighbor Algorithm for finding soccer talent. J. Basic Appl. Sci. Res. 2013, 3, 981–986. [Google Scholar]
- Sibyan, H.; Svajlenka, J.; Hermawan, H.; Faqih, N.; Arrizqi, A.N. Thermal comfort prediction accuracy with machine learning between Regression Analysis and Naïve Bayes Classifier. Sustainability 2022, 14, 15663. [Google Scholar] [CrossRef]
- Bishnoi, S.; Hooda, B.K. Decision Tree Algorithms and their Applicability in Agriculture for Classification. J. Exp. Agric. Int. 2022, 44, 20–27. [Google Scholar] [CrossRef]
- Hassan, I.H.; Abdullahi, M.; Ahmad, B.I.; Ali, Y.S. K-means clustering algorithm based classification of soil fertility in north-west Nigeria. FUDMA J. Sci. 2020, 4, 780–787. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson: London, UK, 2009; p. 1152. [Google Scholar]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Virparia, P. A web based Fuzzy Expert System for insect Pest Management in Groundnut crop Prajna. J. Pure Appl. Sci. 2007, 15, 36–41. [Google Scholar]
- Sicat, R.S.; Carranza, E.J.M.; Nidumolu, U.B. Fuzzy modelling of farmers’ knowledge for land suitability classification. Agric. Syst. 2005, 83, 49–75. [Google Scholar] [CrossRef]
- Hakkim VM, A.; Joseph, E.A.; Gokul, A.J.A.; Mufeedha, K. Precision Farming: The future of Indian Agriculture. J. Appl. Biol. Biotechnol. 2016, 4, 68–72. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Oliver, Y.M.; Robertson, M.J.; Wong, M.T.F. Integrating farmer knowledge, precision agriculture tools, and crop simulation modelling to evaluate management options for poor performing patches in cropping fields. Eur. J. Agron. 2010, 32, 40–50. [Google Scholar] [CrossRef]
- Li, M.; Yost, R. Management-oriented modelling: Optimizing nitrogen management with artificial intelligence. Agric. Syst. 2000, 65, 1–27. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Debaeke, P.; Aboudrare, A. Adaptation of crop management to water-limited environments. Eur. J. Agron. 2004, 21, 433–446. [Google Scholar] [CrossRef]
- Dahikar, S.S.; Rode, S.V. Agricultural crop yield prediction using artificial neural network approach. Int. J. Innov. Res. Electr. Electron. Instrum. Control. Eng. 2014, 2, 683–686. [Google Scholar]
- Lopez, E.M.; Garcia, M.; Schuhmacher, M.; Domingo, J.L. A fuzzy expert system for soil characterization. Environ. Int. 2008, 34, 950–958. [Google Scholar] [CrossRef]
- Zhao, Z.; Chow, T.L.; Rees, H.W.; Yang, Q.; Xing, Z.; Meng, F.R. Predict soil texture distributions using an artificial neural networks. Comput. Electron. Agric. 2009, 65, 36–48. [Google Scholar] [CrossRef]
- Song, H.; He, Y. Crop Nutrition Diagnosis Expert System Based on Artificial Neural Networks. In Proceedings of the 3rd International Conference on Information Technology and Applications 2005, Sydney, Australia, 4–7 July 2005. [Google Scholar]
- Elshorbagy, A.; Parasuraman, K. On the relevance of using artificial neural networks for estimating soil moisture content. J. Hydrol. 2008, 362, 1–18. [Google Scholar] [CrossRef]
- van Henten, E.J.; Hemming, J.; van Tuijl BA, J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; van Os, E.A. An Autonomous Robot for Harvesting Cucumbers in Greenhouses Autonomous Robots. Auton. Robot. 2002, 13, 241–258. [Google Scholar] [CrossRef]
- Singh, D.K.; Sobti, R.; Malik, P.K.; Shrestha, S.; Singh, P.K.; Ghafoor, K.Z. IoT-driven model for weather and soil conditions based on precision irrigation using machine learning. Secur. Commun. Netw. 2022, 2022, 7283975. [Google Scholar] [CrossRef]
- Arif, C.; Mizoguchi, M.; Setiawan, B.I. Estimation of soil moisture in paddy field using Artificial Neural Networks. arXiv 2013, arXiv:1303.1868. [Google Scholar] [CrossRef]
- Bhattacharyay, D.; Maitra, S.; Pine, S.; Shankar, T.; Peera Sk, P.G. Future of Precision Agriculture in India. In Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Shankar, T., Eds.; New Delhi Publishers: New Delhi, India, 2020; pp. 289–299. [Google Scholar]
- Maitra, S.; Shankar, T.; Sairam, M.; Pine, S. Evaluation of Gerbera (Gebera jamesonii L.) cultivars for growth, yield and flower quality under protected cultivation. Indian J. Nat. Sci. 2020, 10, 20271–20276. [Google Scholar]
- Mostaco, G.M.; Ramires, C.S.I.L.; Campos, L.; Cugnasca, C.E. Agronomobot: A smart answering chatbot applied to agricultural sensor networks. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. 14p. [Google Scholar]
- Chunhua, Z.; John, K. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 11119. [Google Scholar]
- BEA. Value Added by Industry as a Percentage of Gross Domestic Product 2018. Available online: https://apps.bea.gov/iTable/iTable.cfm? (accessed on 10 September 2023).
- Kolhe, S.; Kamal, R.; Saini, H.S.; Gupta, G.K. A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the interferences in crops. Comput. Electron. Agric. 2011, 76, 16–27. [Google Scholar] [CrossRef]
- Liu, G.; Yang, X.; Ge, Y.; Miao, Y. An artificial neural network-based expert system for fruit tree disease and insect pest diagnosis. In Proceedings of the International Conference on Networking, Sensing and Control, Lauderdale, FL, USA, 23–25 April 2006. [Google Scholar]
- Tilva, V.; Patel, J.; Bhatt, C. Weather based plant diseases forecasting using fuzzy logic. In Proceedings of the 2013 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, 28–30 November 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Sannakki, S.S.; Rajpurohit, V.S.; Nargund, V.B.; Kumar, A.; Yallur, P.S. Leaf disease grading by machine vision and fuzzy logic. Int. J. Comp. Technol. Appl. 2011, 2, 1709–1716. [Google Scholar]
- Huang, K.Y. Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Comput. Electron. Agric. 2007, 57, 3–11. [Google Scholar] [CrossRef]
- Ortiz, M.P.; Gutierrez, P.A.; Pena, J.M.; Sanchez, J.T.; Granados, F.L.; Martinez, C.H. Machine Learning Paradigms for Weed Mapping via unmanned Aerial Vehicles. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016. [Google Scholar]
- Gerhards, R.; Christensen, S. Real-time weed detection, decision-making and patch-spraying in maize, sugerbeet, winter wheat and winter barley. Weed Res. 2003, 43, 385–392. [Google Scholar] [CrossRef]
- Moallem, P.; Razmjooy, N. A multi-layer perception neural network trained by invasive weed optimization or potato color image segmentation. Trends Appl. Sci. Res. 2012, 7, 445–455. [Google Scholar] [CrossRef]
- Swanton, C.J.; Harker, K.N.; Anderson, R.L. Crop losses due to weeds in Canada. Weed Technol. 1993, 7, 537–542. [Google Scholar] [CrossRef]
- Stigliani, L.; Resina, C. Seloma: Expert system for weed management in herbicide-intensive crops. Weed Technol. 1993, 7, 550–559. [Google Scholar] [CrossRef]
- Liu, G.; Yang, X.; Li, M. An artificial neural network model for crop yield responding to soil parameters. In Advances in Neural Networks–ISNN 2005: Second International Symposium on Neural Networks, Chongqing, China, 30 May–1 June 2005; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Liu, S.Y. Artificial Intelligence (AI) in Agriculture. IT Prof. IEEE Comput. Soc. 2020, 22, 14–15. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Dharmaraj, V.; Vijayanand, C. Artificial Intelligence (AI) in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2122–2128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, P. Can Precision Agriculture Be the Future of Indian Farming?—A Case Study across the South-24 Parganas District of West Bengal, India. Biol. Life Sci. Forum 2024, 30, 3. https://doi.org/10.3390/IOCAG2023-16680
Sengupta P. Can Precision Agriculture Be the Future of Indian Farming?—A Case Study across the South-24 Parganas District of West Bengal, India. Biology and Life Sciences Forum. 2024; 30(1):3. https://doi.org/10.3390/IOCAG2023-16680
Chicago/Turabian StyleSengupta, Panchali. 2024. "Can Precision Agriculture Be the Future of Indian Farming?—A Case Study across the South-24 Parganas District of West Bengal, India" Biology and Life Sciences Forum 30, no. 1: 3. https://doi.org/10.3390/IOCAG2023-16680
APA StyleSengupta, P. (2024). Can Precision Agriculture Be the Future of Indian Farming?—A Case Study across the South-24 Parganas District of West Bengal, India. Biology and Life Sciences Forum, 30(1), 3. https://doi.org/10.3390/IOCAG2023-16680