YOLO-AppleScab: A Deep Learning Approach for Efficient and Accurate Apple Scab Detection in Varied Lighting Conditions Using CARAFE-Enhanced YOLOv7 †
Abstract
:1. Introduction
2. Material and Methodology of the Proposed Research
2.1. You Only Look Once Series (YOLO Series)
2.2. Rectangular Bounding Box and Function
2.3. Content-Aware ReAssembly of Feature:
2.4. Image Acquisition
2.5. The Proposed YOLO-AppleScab Model
2.6. Experiment Setup
3. Results and Discussion
3.1. The Network Visualization
3.2. Performance of the Proposed Model under Different Lighting Conditions
3.3. Comparison of Different State-of-the-Art Algorithms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Lu, R. Non-Destructive Defect Detection of Apples by Spectroscopic and Imaging Technologies: A Review. Trans. ASABE 2017, 60, 1765–1790. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Pandey, M.K.; Bohra, A.; Singh, V.K.; Thudi, M.; Saxena, R.K. Toward the Sequence-Based Breeding in Legumes in the Post-Genome Sequencing Era. Theor. Appl. Genet. 2019, 132, 797–816. [Google Scholar] [CrossRef] [PubMed]
- Sikati, J.; Nouaze, J.C. YOLO-NPK: A Lightweight Deep Network for Lettuce Nutrient Deficiency Classification Based on Improved YOLOv8 Nano. Eng. Proc. 2023, 58, 31. [Google Scholar] [CrossRef]
- Ali, A.; Imran, M. Remotely Sensed Real-Time Quantification of Biophysical and Biochemical Traits of Citrus (Citrus sinensis L.) Fruit Orchards—A Review. Sci. Hortic. 2021, 282, 110024. [Google Scholar] [CrossRef]
- He, W.; Liu, M.; Qin, X.; Liang, A.; Chen, Y.; Yin, Y.; Qin, K.; Mu, Z. Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium Barbarum during Fruit Ripening and Seedling Response to Heat Stress. Curr. Issues Mol. Biol. 2022, 44, 5933–5948. [Google Scholar] [CrossRef]
- Nouaze, J.C.; Kim, J.H.; Jeon, G.R.; Kim, J.H. Monitoring of Indoor Farming of Lettuce Leaves for 16 Hours Using Electrical Impedance Spectroscopy (EIS) and Double-Shell Model (DSM). Sensors 2022, 22, 9671. [Google Scholar] [CrossRef]
- Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef]
- Cubero, S.; Marco-Noales, E.; Aleixos, N.; Barbé, S.; Blasco, J. RobHortic: A Field Robot to Detect Pests and Diseases in Horticultural Crops by Proximal Sensing. Agriculture 2020, 10, 276. [Google Scholar] [CrossRef]
- Tian, Y.; Li, E.; Liang, Z.; Tan, M.; He, X. Diagnosis of Typical Apple Diseases: A Deep Learning Method Based on Multi-Scale Dense Classification Network. Front. Plant Sci. 2021, 12, 698474. [Google Scholar] [CrossRef]
- Zou, X.-b.; Zhao, J.-w.; Li, Y.; Holmes, M. In-Line Detection of Apple Defects Using Three Color Cameras System. Comput. Electron. Agric. 2010, 70, 129–134. [Google Scholar] [CrossRef]
- Zarifneshat, S.; Rohani, A.; Ghassemzadeh, H.R.; Sadeghi, M.; Ahmadi, E.; Zarifneshat, M. Predictions of Apple Bruise Volume Using Artificial Neural Network. Comput. Electron. Agric. 2012, 82, 75–86. [Google Scholar] [CrossRef]
- Omrani, E.; Khoshnevisan, B.; Shamshirband, S.; Saboohi, H.; Anuar, N.B.; Nasir, M.H.N.M. Potential of Radial Basis Function-Based Support Vector Regression for Apple Disease Detection. Measurement 2014, 55, 512–519. [Google Scholar] [CrossRef]
- Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; Plümer, L. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and Systems for Fruit Detection and Localization: A Review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Kzizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks|Communications of the ACM. Assoc. Comput. Mach. 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Computer Society, Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Zhang, K.; Wu, Q.; Liu, A.; Meng, X. Can Deep Learning Identify Tomato Leaf Disease? Adv. Multimed. 2018, 2018, 10. [Google Scholar] [CrossRef]
- Bhange, M.A.; Hingoliwala, H.A. A Review of Image Processing for Pomegranate Disease Detection. Int. J. Comput. Sci. Inf. Technol. 2014, 6, 92–94. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wan, S.; Goudos, S. Faster R-CNN for Multi-Class Fruit Detection Using a Robotic Vision System. Comput. Netw. 2019, 168, 107036. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28. [Google Scholar]
- Kodors, S.; Lacis, G.; Sokolova, O.; Zhukovs, V.; Apeinans, I.; Bartulsons, T. AppleScabFDs Dataset. Available online: https://www.kaggle.com/datasets/projectlzp201910094/applescabfds (accessed on 17 February 2023).
Computer Configuration | Specific Parameters |
---|---|
CPU | 11th Gen Intel® Core™ i5-11400H |
GPU | NVIDIA Geforce RTX 3050 |
Operating system | Ubuntu 22.04.1 LTS |
Random Access Memory | 16 GB |
Illumination | Class | GT | Correctly Identified | Falsely Identified | Missed | |||
---|---|---|---|---|---|---|---|---|
Amount | Rate | Amount | Rate | Amount | Rate | |||
Strong Light | Healthy | 20 | 18 | 90% | 1 | 5% | 1 | 5% |
Scab | 28 | 27 | 96.43% | 1 | 0% | 0 | 3.57% | |
Soft Light | Healthy | 29 | 22 | 75.86% | 2 | 6.87% | 5 | 17.24% |
Scab | 27 | 23 | 85.18% | 2 | 7.41% | 2 | 7.4% |
Model | Healthy | Scab | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Precision (%) | Recall (%) | F1 (%) | (%) | (%) | Precision (%) | Recall (%) | F1 (%) | (%) | (%) | |
Yolov3 | 88.38 | 56.64 | 69.04 | 68.60 | 41.60 | 68.20 | 91.80 | 78.23 | 92.10 | 69.80 |
yolov4 | 89.90 | 67.30 | 76.98 | 79.40 | 53.90 | 89.40 | 95.90 | 92.54 | 92.70 | 70,30 |
Yolov7 | 85.40 | 74.50 | 79.58 | 80.10 | 51,60 | 91.80 | 90.90 | 91.35 | 93.40 | 72.70 |
Yolo-Applescab | 100 | 74.50 | 85.39 | 83.30 | 54.80 | 89.50 | 95.90 | 92.58 | 94.70 | 73.20 |
Model | Healthy | Scab |
---|---|---|
(%) | (%) | |
YOLOv3 | 41.60 | 69.80 |
YOLOv4 | 53.90 | 70.30 |
YOLOv7 | 51.60 | 72.70 |
Faster R-CNN | 47.03 | 59.79 |
YOLO-AppleScab | 54.80 | 73.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouaze, J.C.; Sikati, J. YOLO-AppleScab: A Deep Learning Approach for Efficient and Accurate Apple Scab Detection in Varied Lighting Conditions Using CARAFE-Enhanced YOLOv7. Biol. Life Sci. Forum 2024, 30, 6. https://doi.org/10.3390/IOCAG2023-16688
Nouaze JC, Sikati J. YOLO-AppleScab: A Deep Learning Approach for Efficient and Accurate Apple Scab Detection in Varied Lighting Conditions Using CARAFE-Enhanced YOLOv7. Biology and Life Sciences Forum. 2024; 30(1):6. https://doi.org/10.3390/IOCAG2023-16688
Chicago/Turabian StyleNouaze, Joseph Christian, and Jordane Sikati. 2024. "YOLO-AppleScab: A Deep Learning Approach for Efficient and Accurate Apple Scab Detection in Varied Lighting Conditions Using CARAFE-Enhanced YOLOv7" Biology and Life Sciences Forum 30, no. 1: 6. https://doi.org/10.3390/IOCAG2023-16688
APA StyleNouaze, J. C., & Sikati, J. (2024). YOLO-AppleScab: A Deep Learning Approach for Efficient and Accurate Apple Scab Detection in Varied Lighting Conditions Using CARAFE-Enhanced YOLOv7. Biology and Life Sciences Forum, 30(1), 6. https://doi.org/10.3390/IOCAG2023-16688