Natural Mineral Enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and Interaction with Other Nutrients by XRF Analysis †
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Xiao, Q.; Bai, X.; He, Y. Rapid Screen of the Color and Water Content of Fresh-Cut Potato Tuber Slices Using Hyperspectral Imaging Coupled with Multivariate Analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization). Potato World: Production and Consumption—International Year of the Potato 2008. Available online: http://www.fao.org/potato-2008/en/world/ (accessed on 3 November 2020).
- CIP—International Potato Center. Potato Facts and Figures. 2018. Available online: https://cipotato.org/crops/potato/potato-facts-and-figures/ (accessed on 4 November 2020).
- Muthoni, J.; Mbiyu, M.; Nyamongo, D. A review of potato seed systems and germplasm conservation in Kenya. J. Agric. Food Inf. 2010, 11, 157–167. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Classification of potato cultivars to establish their processing aptitude. J. Sci. Food Agric. 2016, 96, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Thompson, H.; McGinley, J.; Neil, E.; Rush, D.; Holm, D.; Stushnoff, C. Functional food characteristics of potato cultivars (Solanum tuberosum L.): Phytochemical composition and inhibition of 1-methyl-1-nitrosourea induced breast cancer in rats. J. Food Compos. Anal. 2009, 22, 571–576. [Google Scholar] [CrossRef]
- Ali, M.; Nasiruddin, K.; Haque, M.; Faisal, S. Virus elimination in potato through meristem culture followed by thermotherapy. SAARC J. Agric. 2014, 11, 71–80. [Google Scholar] [CrossRef]
- Cima, F.F.; Pereira, E.D.S.; Schiavon, M.V.; Munhoz, P.C.; Lenz, E.A.; Wolter, D.D.; Pereira, A.D.S. Bioactive compounds, processing quality and yield of colored flesh potato clones. Horti. Bras. 2020, 38, 139–145. [Google Scholar] [CrossRef]
- Poggi, V.; Arcioni, A.; Filippini, P.; Pifferi, P. Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J. Agric. Food Chem. 2000, 48, 4749–4751. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Faquin, V.; Andrade, F.; Carneiro, J.; Júnior, E.; Souza, K.; Pereira, J.; Guilherme, L. Physiological and physicochemical responses of potato to selenium biofortification in tropical soil. Potato Res. 2019, 62, 315–331. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Zhang, X.; Zhang, W.; Huang, L.; Zhang, Z.; Yuan, L.; Liu, X. Effects of foliar application of selenate and selenite at different growth stages on Selenium accumulation and speciation in potato (Solanum tuberosum L.). Food Chem 2019, 286, 550–556. [Google Scholar] [PubMed]
- Mousavi, S.; Galavi, M.; Ahmadvand, G. Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.). Asian J. Plant Sci. 2007, 6, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- White, P.; Thompson, J.; Wright, G.; Rasmussen, S. Biofortifying scottish potatoes with zinc. Plant Soil 2016, 411, 151–165. [Google Scholar] [CrossRef]
- Díaz-Gómez, J.; Twyman, R.M.; Zhu, C.; Farré, G.; Serrano, J.C.E.; Portero-Otin, M.; Muñoz, P.; Sandmann, G.; Capell, T.; Christou, P. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotech. 2017, 44, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. EBSS 2017, 1, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Sen, F.; Karacali, I.; Irget, M.E.; Elmaci, O.L.; Tepecik, M. A new strategy to enrich calcium nutrition of fruit: Synergistic effects of postharvest foliar calcium and boron sprays. J. Plant Nutr. 2010, 33, 175–184. [Google Scholar] [CrossRef]
- Elmer, P.A.G.; Spiers, T.M.; Wood, P.N. Effects of pre-harvest foliar calcium sprays on fruit calcium levels and brown rot of peaches. Crop Prot. 2007, 26, 11–18. [Google Scholar] [CrossRef]
- McGuire, R.G.; Kelman, A. Calcium in potato tuber cell walls in relation to tissue maceration by Erwinia carotovora pv. atroseptica. Phytopathology 1986, 76, 401–406. [Google Scholar] [CrossRef]
- D’Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Serio, F.; Santamaria, P. Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production. Food Chem. 2016, 213, 149–156. [Google Scholar] [CrossRef] [PubMed]
- NIH (National Institutes of Health). Available online: https://pubchem.ncbi.nlm.nih.gov/compound/calcium (accessed on 4 November 2020).
- Hocking, B.; Tyerman, S.; Burton, R.; Gilliham, M. Fruit calcium: Transport and physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Qin, G.; Zhang, H.; Tao, S.; Wu, J.; Wang, S.; Zhang, S. Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis ‘Nanguoli’) fruit during post-harvest ripening process. Sci. Hortic-Amst. 2017, 215, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates, Inc.: Sunderland, UK, 2002; p. 665. [Google Scholar]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5 (Suppl. 1), S23–S30. [Google Scholar] [CrossRef] [Green Version]
- IOM—Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16395-8. [Google Scholar]
- Buchowski, M.S. Calcium in the context of dietary sources and metabolism. In Calcium: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; Food and Nutritional Components in Focus—Book Series; Royal Society of Chemistry: London, UK, 2015; Chapter 1; pp. 3–20. ISBN 978-1-78262-213-0. [Google Scholar]
- Sharma, D.; Jamra, G.; Singh, U.; Sood, S.; Kumar, A. Calcium biofortification: Three pronged molecular approaches for dissecting complex trait of calcium nutrition in finger millet (Eleusine coracana) for devising strategies of enrichment of food crops. Front. Plant Sci. 2017, 7, 2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AHDB—Agriculture and Horticulture Development Board. Available online: http://varieties.ahdb.org.uk/varieties/view/Agria (accessed on 4 November 2020).
- Pelica, J.; Barbosa, S.; Lidon, F.; Pessoa, M.F.; Reboredo, F.; Calvão, T. The paradigm of high concentration of metals of natural or anthropogenic origin in soils—The case of Neves-Corvo mine area (Southern Portugal). J. Geochem. Explor. 2018, 186, 12–23. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front. Plant Sci. 2018, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The three-dimensional distribution of minerals in potato tubers. Ann Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Weinl, S.; Held, K.; Schlücking, K.; Steinhorst, L.; Kuhlgert, S.; Hippler, M.; Kudla, J. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol. 2008, 179, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Dayod, M.; Tyerman, S.; Leigh, R.; Gilliham, M. Calcium storage in plants and the implications for calcium biofortification. Protoplasma 2010, 247, 215–231. [Google Scholar] [CrossRef]
- El-Yazied, A.; Ragab, M.E.; Ibrahim, R.E.; El-Wafa, A. Effect of nitrogen fertigation levels and chelated Calcium foliar application on the productivity of sweet corn. AJS 2007, 15, 131–139. [Google Scholar] [CrossRef]
- Rasouli-Sadaghiani, M.; Moghaddas Gerani, M.; Ashrafi Saeidlou, S.; Sepehr, E. Effect of Different Calcium Sources Application on Antioxidant, Enzymatic Activity and Qualitative Characteristics of Apple (Malus domestic). JCPP 2017, 7, 73–87. [Google Scholar] [CrossRef]
- Alonso, T.A.; Barreto, R.; Prado, R.; Souza, J.; Carvalho, R. Silicon spraying alleviates calcium deficiency in tomato plants, but Ca-EDTA is toxic. J. Plant. Nutr. Soil Sci. 2020, 183, 659–664. [Google Scholar] [CrossRef]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional value of potatoes. Adv. Potato Chem. Technol. 2009, 4, 395–424. [Google Scholar] [CrossRef]
- Rusinovci, I.; Aliu, S.; Fetahu, S.H.; Kaçiu, S.; Salihu, S.; Zeka, D.; Berisha, D. Contents of mineral substances in the potato (Solanum tuberosum L.) tubers depending on cultivar and locality in the agro-ecological conditions of Kosovo. Acta Hortic. 2012, 960, 289–292. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Dev, G. Interaction effect of calcium and sulphur on the growth and nutrient composition of alfalfa (Medicago sativa L. pers.), using35S. Plant Soil 1978, 50, 125–134. [Google Scholar] [CrossRef]
- Braun, H.; Fontes, P.; Finger, F.; Busato, C.; Cecon, P. Carboidratos e matéria seca de tubérculos de cultivares de batata influenciados por doses de nitrogênio. Ciência Agrotecnologia 2010, 34, 285–293. [Google Scholar] [CrossRef]
- Murayama, D.; Sakashita, Y.; Yamazawa; Nakata, K.; Shinbayashi, Y.; Palta, J.; Tani, M.; Yamuchi, H.; Koaze, H. Effect of calcium fertilization on processing properties and storability of frozen French fries. Food Sci. Technol. Res. 2016, 22, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; D’Amelia, V.; Gallo, V.; Palomba, S.; Carputo, D.; Masi, P. Relationships between composition, microstructure and cooking performances of six potato cultivars. Food Res. Int. 2018, 114, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.; Mavromatis, A.; Vaitsi, O.; Korkovelos, A.; Golia, E. Effect of genotype and geographical origin on potato properties (physical and sensory) for authenticity purposes. J. Agric. Sci. 2012, 4, 1916–1960. [Google Scholar] [CrossRef]
- Portaria n.º 587/87 de 9 de Julho. Diário da República n.o 155/1987, Série, I. Ao abrigo do disposto no n.o1 do artigo 4.o do Decreto-Lei n.o 512/85, de 31 de Dezembro; Ministérios da Agricultura, Pescas e Alimentação e da Indústria e Comércio: Lisboa, Portugal, 2021.
- Amaral, A.; Militão, J. Efeito de Doses e Modo de Fraccionamento de Potássio na Batata de Indústria “VR0808”. Rev. Unidade Investig. Inst. Politécnico St. 2015, 3, 118–130. Available online: http://hdl.handle.net/10400.15/1569 (accessed on 5 November 2020).
- Ahangarnezhad, N.; Najafi, G.; Jahanbakhshi, A. Determination of the physical and mechanical properties of a potato (the Agria variety) in order to mechanise the harvesting and post-harvesting operations. Res. Agric. Eng. 2019, 65, 33–39. [Google Scholar] [CrossRef]
- Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F.J. Impact of the characteristics of fresh potatoes available in-retail on exposure to acrylamide: Case study for French fries. Food Control 2017, 73, 1407–1414. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitao, A.E.; Ramalho, J.C.; Lidon, F.C. Application of colour parameters for assessing the quality of Arabica and Robusta green coffee. Emir. J. Food Agric. 2014, 26, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Herrero, J.A.; Frutos, M.J. Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem. 2014, 154, 199–204. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem. 2004, 86, 69–77. [Google Scholar] [CrossRef]
- Kus, Z.A.; Demir, B.; Eski, I.; Gurbuz, F.; Ercisli, S. Estimation of the colour properties of apples varieties using neural network. Erwerbs-Obstbau 2017, 59, 291–299. [Google Scholar] [CrossRef]
- Kumar, N.; Sarnagat, V.S. A Study on Colour and Dimensional Assessment of Different Apple cultivars present in Domestic Fruit Market of NCR Region. J. Trop. Agric. 2017, 35, 849–856. [Google Scholar]
- Coleman, W. Comparative performance of the L* a* b* colour space and North American colour charts for determining chipping quality in tubers of potato (Solanum tuberosum L.). Can. J. Plant Sci. 2004, 84, 291–298. [Google Scholar] [CrossRef]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Serrano, A.B.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Colelli, G. Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 2009, 53, 138–144. [Google Scholar] [CrossRef]
- Picouet, P.A.; Gou, P.; Pruneri, V.; Diaz, I.; Castellari, M. Implementation of a quality by design approach in the potato chips frying process. J. Food Eng. 2019, 260, 22–29. [Google Scholar] [CrossRef]
Treatments | Ca | K | S | P |
---|---|---|---|---|
g kg−1 | ||||
Control | 0.57 d ± 0.01 | 30.73 e ± 0.19 | 1.13 c ± 0.06 | 0.80 d ± 0.05 |
CaCl2 (12 kg ha−1) | 0.61 d ± 0.02 | 31.57 d ± 0.08 | 1.15 c ± 0.01 | 0.62 e ± 0.01 |
CaCl2 (24 kg ha−1) | 0.72 c ± 0.00 | 35.40 b ± 0.02 | 1.24 c ± 0.00 | 1.00 c ± 0.00 |
Ca(EDTA) (12 kg ha−1) | 1.27 a ± 0.01 | 41.23 a ± 0.15 | 2.07 a ± 0.03 | 1.72 a ± 0.01 |
Ca(EDTA) (24 kg ha−1) | 1.07 b ± 0.00 | 32.28 c ± 0.09 | 1.49 b ± 0.01 | 1.34 b ± 0.01 |
Treatments | Dry Weight (%) | Height (cm) | Diameter (cm) |
---|---|---|---|
Control | 17.12 a ± 0.69 | 8.20 a ± 0.49 | 7.57 a ± 0.48 |
CaCl2 (12 kg ha−1) | 21.89 a ± 0.89 | 10.10 a ± 1.01 | 8.03 a ± 0.52 |
CaCl2 (24 kg ha−1) | 16.77 a ± 2.52 | 9.20 a ± 0.96 | 6.63 a ± 0.52 |
Ca(EDTA) (12 kg ha−1) | 20.97 a ± 1.87 | 8.20 a ± 0.61 | 6.60 a ± 0.42 |
Ca(EDTA) (24 kg ha−1) | 18.99 a ± 0.44 | 12.67 a ± 2.27 | 7.97 a ± 0.38 |
Treatments | L | Chroma | Hue |
---|---|---|---|
Control | 62.88 a ± 1.36 | 22.76 b ± 0.37 | 105.8 a ± 0.2 |
CaCl2 (12 kg ha−1) | 62.74 a ± 2.03 | 24.18 a,b ± 0.89 | 104.9 a ± 0.4 |
CaCl2 (24 kg ha−1) | 63.51 a ± 0.74 | 25.09 a,b± 0.38 | 108.5 a ± 0.1 |
Ca(EDTA) (12 kg ha−1) | 62.92 a ± 0.71 | 30.47 a ± 2.91 | 102.3 b ± 1.1 |
Ca(EDTA) (24 kg ha−1) | 64.98 a ± 3.12 | 23.27 b ± 0.82 | 105.3 a ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Daccak, D.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; Legoinha, P.; et al. Natural Mineral Enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and Interaction with Other Nutrients by XRF Analysis. Biol. Life Sci. Forum 2021, 4, 77. https://doi.org/10.3390/IECPS2020-08709
Coelho ARF, Pessoa CC, Marques AC, Luís IC, Daccak D, Silva MM, Simões M, Reboredo FH, Pessoa MF, Legoinha P, et al. Natural Mineral Enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and Interaction with Other Nutrients by XRF Analysis. Biology and Life Sciences Forum. 2021; 4(1):77. https://doi.org/10.3390/IECPS2020-08709
Chicago/Turabian StyleCoelho, Ana Rita F., Cláudia Campos Pessoa, Ana Coelho Marques, Inês Carmo Luís, Diana Daccak, Maria Manuela Silva, Manuela Simões, Fernando H. Reboredo, Maria F. Pessoa, Paulo Legoinha, and et al. 2021. "Natural Mineral Enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and Interaction with Other Nutrients by XRF Analysis" Biology and Life Sciences Forum 4, no. 1: 77. https://doi.org/10.3390/IECPS2020-08709
APA StyleCoelho, A. R. F., Pessoa, C. C., Marques, A. C., Luís, I. C., Daccak, D., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Ramalho, J. C., Campos, P. S., Pais, I. P., & Lidon, F. C. (2021). Natural Mineral Enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and Interaction with Other Nutrients by XRF Analysis. Biology and Life Sciences Forum, 4(1), 77. https://doi.org/10.3390/IECPS2020-08709