Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum) †
Abstract
:1. Introduction
2. Methods
2.1. Raw Material Procurement
2.2. Determination of Water Activity and Color
2.3. Fatty Acid Profile
2.4. Experimental Design
3. Results and Discussions
3.1. Water Activity
3.2. Color
3.3. Fatty Acid Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidal, O.; Brusca, R.C. Mexico’s biocultural diversity in peril. Rev. Biol. Trop. 2020, 68, 669–691. [Google Scholar] [CrossRef]
- Lascurain, M.; Avendaño, S.; del Amo, S.; Niembro, A. Guía de Frutos Silvestres Comestibles en Veracruz; Fondo Sectorial para la Investigación, el Desarrollo y la Innovación Tecnológica Forestal, CONAFOR-CONACYT: Zapopan, Jalisco, México, 2010; p. 144. [Google Scholar]
- Hernández-Mora, A.E.; Trejo-Téllez, L.I.; Hernández-Cázares, A.S.; Contreras-Oliva, A.; Gómez-Merino, F.C. Cachichín seed (Oecopetalum mexicanum Greenm. & CH Thomps.): Source of nutrients and bioactive compounds. Rev. Chapingo Ser. Agric. Trop. 2021, 1, 57–69. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Z.; Xiong, F.; Zhang, G. Enzyme inactivation induced by thermal stabilization in highland barley and impact on lipid oxidation and aroma profiles. Front. Nutr. 2023, 10, 1097775. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.J.; Singh, S.M.; Rao, P.S. Novel thermal and non-thermal millet processing technologies: Advances and research trends. Eur. Food Res. Technol. 2023, 249, 1149–1160. [Google Scholar] [CrossRef]
- Hernández-Mora, A.E.; Trejo-Téllez, L.I.; Zavaleta-Mancera, H.A.; Herrera-Corredor, J.A.; Crosby-Galván, M.M.; Gómez-Merino, F.C. Biochemical, anatomical, and histochemical characterization of cachichín (Oecopetalum mexicanum Greenm. & CH Thomps: Metteniusaceae) seeds exposed to different thermal treatments. PeerJ 2024, 12, e16663. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 573–586. [Google Scholar] [CrossRef]
- Bell, L.N. Moisture effects on food’s chemical stability. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 227–253. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, N.; Xin, H.; Yu, L.; Xu, Q.; Cui, Y. Unsaturated fatty acids in natural edible resources: A systematic review of classification, resources, biosynthesis, biological activities, and application. Food Biosci. 2023, 53, 102790. [Google Scholar] [CrossRef]
- Wu, H.; Yin, J.; Zhang, J.; Richards, M.P. Factors affecting lipid oxidation due to pig and turkey hemolysate. J. Agric. Food Chem. 2017, 65, 8011–8017. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Agricultural Chemists, 19th ed.; AOAC International: Washington, DC, USA, 2010; Chapter 10. [Google Scholar]
- Hernández-Mora, A.E.; Castillo-Morales, M.; García-Montalvo, E.A.; Flores-Andrade, E. Prueba de toxicidad aguda-oral del aceite de la semilla Oecopetalum mexicanum en ratones BALB/c. J. CIM 2017, 5, 1043–1050. Available online: https://cimorizaba.wixsite.com/home/articulos (accessed on 10 December 2024).
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Agricultural Chemists, 18th ed.; AOAC International: Washington, DC, USA, 2005; Chapter 4. [Google Scholar]
- Christie, W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Advances in Lipid Methodology; Christie, W.W., Ed.; The Oily Press: Dundee, UK, 1993; pp. 69–111. [Google Scholar]
- Nzewi, D.; Egbunonu, A.C.C. Effect of boiling and roasting on the proximate properties of asparagus bean (Vigna sesquipedalis). Afr. J. Biotechnol. 2011, 10, 11239–11244. [Google Scholar] [CrossRef]
- Kinge, E.E.; Djikeng, F.T.; Karuna, M.S.L.; Ngoufack, F.Z.; Womeni, H.M. Effect of boiling and roasting on the physicochemical properties of Djansang seeds (Ricinodendron heudelotii). Food Sci. Nutr. 2019, 7, 3425–3434. [Google Scholar] [CrossRef] [PubMed]
- Apaydın, H.; Demirci, M.; Bölük, E.; Kopuk, B.; Palabiyik, I. Effect of different roasting conditions on the physicochemical properties, acrylamide concentration, and mineral bioaccessibility of nuts. Food Biosci. 2024, 58, 103646. [Google Scholar] [CrossRef]
- Bagheri, H.; Kashaninejad, M.; Ziaiifar, A.M.; Aalami, M. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Inf. Process. Agric. 2019, 6, 255–264. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Olatidoye, O.P. Effect of temperature and time combinations on colour characteristics, mineral and vitamin content raw and roasted cashew kernel. J. Food Process. Technol. 2021, 12, 554. [Google Scholar]
- Batariuc, A.; Coțovanu, I.; Mironeasa, S. Sorghum flour features related to dry heat treatment and milling. Foods 2023, 12, 2248. [Google Scholar] [CrossRef] [PubMed]
- Bork, L.V.; Proksch, N.; Rohn, S.; Kanzler, C. Contribution of hydroxycinnamic acids to color formation in nonenzymatic browning reactions with key Maillard reaction intermediates. J. Agric. Food Chem. 2024, 72, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Zhang, Q.; Chai, G.; Yang, C.; Meng, Y.; Xu, H.; Chen, S. Color characteristics and pyrolysis volatile properties of main colored fractions from the Maillard reaction models of glucose with three amino acids. LWT 2024, 192, 115739. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, R.; Liu, S.; Wang, P.; Zhu, Y.; Niu, T.; Chen, H. The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk—A comprehensive review. Int. J. Mol. Sci. 2024, 25, 8670. [Google Scholar] [CrossRef]
- Zielinski, Z.A.; Pratt, D.A. Lipid peroxidation: Kinetics, mechanisms, and products. J. Org. Chem. 2017, 82, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.P.T.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of lipids in foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of lipids in food flavor generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Dong, J.; He, X.; Wang, J.; Li, C.; Dong, L.; Zhang, Y.; Zhou, X.; Wang, H.; Yi, Y.; et al. Impact of heating temperature and fatty acid type on the formation of lipid oxidation products during thermal processing. Front. Nutr. 2022, 9, 913297. [Google Scholar] [CrossRef]
- Rashid, M.T.; Liu, K.; Han, S.; Jatoi, M.A. The effects of thermal treatment on lipid oxidation, protein changes, and storage stabilization of rice bran. Foods 2022, 11, 4001. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Shoeman, D.W.; Csallany, A.S. Formation of 4-hydroxy-2-trans-nonenal, a toxic aldehyde, in thermally treated olive and sunflower oils. J. Am. Oil Chem. Soc. 2018, 95, 813–823. [Google Scholar] [CrossRef]
- Keller, J.; Baradat, M.; Jouanin, I.; Debrauwer, L.; Guéraud, F. “Twin peaks”: Searching for 4-hydroxynonenal urinary metabolites after oral administration in rats. Redox Biol. 2015, 4, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mora, A.E.; Castillo-Morales, M.; Herrera-Corredor, J.A.; Contreras-Oliva, A.; Trejo-Téllez, L.I.; Aguiñiga-Sánchez, I.; Gómez-Merino, F.C.; Hernández-Cázares, A.S. Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum). In Proceedings of the 5th International Electronic Conference on Foods, Online, 15–30 October 2024. [Google Scholar]
Variable | Treatment | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
L* | 64.57 ± 0.11 a | 55.33 ± 0.10 ab | 54.90 ± 0.16 ab | 47.06 ± 0.25 b |
a* | 5.10 ± 0.08 b | 11.64 ± 0.12 a | 11.10 ± 0.09 a | 11.64 ± 0.01 ab |
b* | 20.28 ± 0.04 a | 21.50 ± 0.02 a | 22.12 ± 0.81 a | 21.09 ± 0.07 a |
C* | 20.87 ± 0.05 c | 23.51 ± 0.07 ab | 24.46 ± 0.18 a | 24.85 ± 0.06 bc |
H° | 75.84 ± 0.20 a | 61.58 ± 0.23 b | 63.30 ± 0.39 ab | 63.79 ± 0.10 ab |
Treatment | ||||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
Fatty Acid | g 100 g Seed−1 | |||
Oleic acid | 2.42 ± 0.04 a | 1.66 ± 0.02 ab | 1.44 ± 0.02 b | 2.03 ± 0.03 ab |
Linoleic acid | 13.06 ± 0.07 a | 9.08 ± 0.07 ab | 6.78 ± 0.03 b | 10.95 ± 0.04 ab |
Linolenic acid | 1.73 ± 0.03 a | 1.04 ± 0.02 ab | 0.75 ± 0.01 b | 1.44 ± 0.02 ab |
Palmitic acid | 5.07 ± 0.03 a | 3.52 ± 0.03 ab | 3.32 ± 001 b | 4.24 ± 0.01 ab |
Stearic acid | 2.50 ± 0.05 a | 1.77 ± 0.02 ab | 1.48 ± 0.02 b | 1.95 ± 0.03 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Mora, A.E.; Gómez-Merino, F.C.; Castillo-Morales, M.; Herrera-Corredor, J.A.; Trejo-Téllez, L.I.; Aguiñiga-Sánchez, I.; Contreras-Oliva, A.; Hernández-Cázares, A.S. Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum). Biol. Life Sci. Forum 2024, 40, 28. https://doi.org/10.3390/blsf2024040028
Hernández-Mora AE, Gómez-Merino FC, Castillo-Morales M, Herrera-Corredor JA, Trejo-Téllez LI, Aguiñiga-Sánchez I, Contreras-Oliva A, Hernández-Cázares AS. Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum). Biology and Life Sciences Forum. 2024; 40(1):28. https://doi.org/10.3390/blsf2024040028
Chicago/Turabian StyleHernández-Mora, Alejandro Esli, Fernando Carlos Gómez-Merino, Marisol Castillo-Morales, José Andrés Herrera-Corredor, Libia Iris Trejo-Téllez, Itzen Aguiñiga-Sánchez, Adriana Contreras-Oliva, and Aleida Selene Hernández-Cázares. 2024. "Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum)" Biology and Life Sciences Forum 40, no. 1: 28. https://doi.org/10.3390/blsf2024040028
APA StyleHernández-Mora, A. E., Gómez-Merino, F. C., Castillo-Morales, M., Herrera-Corredor, J. A., Trejo-Téllez, L. I., Aguiñiga-Sánchez, I., Contreras-Oliva, A., & Hernández-Cázares, A. S. (2024). Thermal Treatments Affect the Color, Water Activity, and Fatty Acid Profile of Cachichín Seed (Oecopetalum mexicanum). Biology and Life Sciences Forum, 40(1), 28. https://doi.org/10.3390/blsf2024040028