Effects of Cleaning Procedures on the Concentration of Pesticide Residues on Crisp Fresh-Cut Lettuce (cv. Vera) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Lettuce Acquirenment
2.2.1. Commercial Samples and Processing
2.2.2. Lettuce Production and Pre-Harvest Treatments
2.2.3. Lettuce Harvest and Post-Harvest Processing
2.2.4. Chemical Treatments
2.2.5. Ultrasound Treatments
2.3. Development and Validation of Extraction Method
3. Results
3.1. Method Validation
3.2. Commercial Lettuce Samples
3.3. Decontamination Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro-Ibañez, I.; Gil, M.; Allende, A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT-Food Sci. Technol. 2017, 85, 284–292. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Pesticides Residues in Food Online Database. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 15 September 2021).
- Arienzo, M.; Cataldo, D.; Ferrara, L. Pesticide residues in fresh-cut vegetables from integrated pest management by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Food Control 2013, 31, 108–115. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound-based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochemistry 2015, 27, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrason. Sonochemistry 2019, 60, 104726. [Google Scholar] [CrossRef]
- Roknul Azam, S.M.; Ma, H.; Xu, B.; Devi, S.; Stanley, S.L.; Md Siddique, A.B.; Mujumdar, A.S.; Zhu, J. Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. LWT-Food Sci. Technol. 2021, 143, 111147. [Google Scholar] [CrossRef]
- European Commission DG-SANTE. Document No. SANTE 12682/2019. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 31 March 2022).
- Lehotay, S.J.; Matovská, K.; Lightfield, A.R. Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastassiades, M.; Scherbaum, E.; Taşdelen, B.; Štajnbaher, D. Recent Developments in QuEChERS Methodology for Pesticide Multiresidue Analysis. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety, Chapter 46, 1st ed.; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Jhon Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No.299/2008 of the European Parliament and of the Council of 11 March 2008 Amending Regulation (EC) No. 396/2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin. Off. J. Eur. Commun. L9. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0299&from=EN (accessed on 31 March 2022).
Pesticide | 10 μg/kg | 25 μg/kg | 50 μg/kg | LOQ (μg/kg) | Lineal Range (μg/kg) | Matrix Effect (%) | |||
---|---|---|---|---|---|---|---|---|---|
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | ||||
Acetamiprid | 87 | 1 | 96 | 3 | 98 | 2 | 10 | 5–100 | −14 |
Boscalid | 92 | 10 | 90 | 9 | 108 | 9 | 10 | 5–50 | 1 |
Carbendazim | --- | --- | 82 | 3 | 83 | 4 | 25 | 5–100 | −29 |
Chlorpyirifos ethyl | 112 | 5 | 100 | 5 | 100 | 3 | 10 | 5–100 | 1 |
Chlorpyrifos methyl | --- | --- | 92 | 8 | 117 | 14 | 25 | 5–50 | −8 |
Cyromazine | 94 | 4 | 88 | 1 | 85 | 1 | 10 | 5–100 | 1 |
Dimethoate | 97 | 3 | 97 | 1 | 98 | 1 | 10 | 5–100 | −7 |
Fluvalinate | 93 | 20 | 96 | 17 | 101 | 15 | 10 | 5–100 | 1 |
Imidacloprid | 97 | 11 | 94 | 4 | 94 | 8 | 10 | 5–100 | 2 |
Iprodione | --- | --- | --- | --- | 91 | 8 | 50 | 25–100 | −7 |
Methomyl | 104 | 4 | 96 | 2 | 96 | 3 | 10 | 5–100 | 0 |
Pirimicarb | 101 | 2 | 96 | 2 | 96 | 1 | 10 | 5–100 | 0 |
Propamocarb | 95 | 2 | 91 | 2 | 90 | 2 | 10 | 5–100 | 4 |
Pyraclostrobin | --- | --- | 117 | 3 | 109 | 4 | 25 | 10–100 | −3 |
Pyrimethanil | 95 | 7 | 96 | 7 | 99 | 4 | 10 | 5–100 | −4 |
Spynosad | 102 | 2 | 100 | 3 | 101 | 3 | 10 | 5–100 | −11 |
Pesticide | MRL | Sample 12 (mg/kg) | Sample 13 (mg/kg) | Sample 14 (mg/kg) | Sample 15 (mg/kg) | Sample 16 (mg/kg) | Sample 17 (mg/kg) | Sample 18 (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|
CA (mg/kg) | EU (mg/kg) | ||||||||
Acetamiprid | --- | 1.5 | ND | ND | ND | ND | 0.115 | 0.414 | ND |
Boscalid | --- | 50 | ND | ND | ND | ND | 0.315 | 0.985 | ND |
Carbendazim | 5 | 0.1 | ND | ND | ND | ND | <0.010 | <0.010 | ND |
Iprodione | 10 | 0.01 | ND | ND | ND | ND | 0.053 | 0.131 | ND |
Propamocarb | 100 | 40 | 2.5 | 4.2 | 0,033 | <0.010 | ND | ND | 10 |
Pyraclostrobin | 40 | 2 | ND | ND | ND | ND | 0.125 | 0.308 | ND |
Pyrimethanil | --- | 20 | ND | ND | ND | ND | <0.025 | <0.010 | ND |
Spynosad | --- | 10 | ND | < 0.010 | ND | ND | <0.025 | <0.010 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonzo, N.; do Carmo, H.; Paullier, A.P.; Santos, I.; de Mattos, B.; Irazoqui, M.; Pareja, L. Effects of Cleaning Procedures on the Concentration of Pesticide Residues on Crisp Fresh-Cut Lettuce (cv. Vera). Biol. Life Sci. Forum 2021, 6, 53. https://doi.org/10.3390/Foods2021-11023
Alonzo N, do Carmo H, Paullier AP, Santos I, de Mattos B, Irazoqui M, Pareja L. Effects of Cleaning Procedures on the Concentration of Pesticide Residues on Crisp Fresh-Cut Lettuce (cv. Vera). Biology and Life Sciences Forum. 2021; 6(1):53. https://doi.org/10.3390/Foods2021-11023
Chicago/Turabian StyleAlonzo, Noel, Hugo do Carmo, Ana Paula Paullier, Inés Santos, Brian de Mattos, Magdalena Irazoqui, and Lucía Pareja. 2021. "Effects of Cleaning Procedures on the Concentration of Pesticide Residues on Crisp Fresh-Cut Lettuce (cv. Vera)" Biology and Life Sciences Forum 6, no. 1: 53. https://doi.org/10.3390/Foods2021-11023
APA StyleAlonzo, N., do Carmo, H., Paullier, A. P., Santos, I., de Mattos, B., Irazoqui, M., & Pareja, L. (2021). Effects of Cleaning Procedures on the Concentration of Pesticide Residues on Crisp Fresh-Cut Lettuce (cv. Vera). Biology and Life Sciences Forum, 6(1), 53. https://doi.org/10.3390/Foods2021-11023