Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Jackfruit Seeds and Powder Preparation
2.2. Food Formulation and Diet Paradigms
2.3. Experimental Animals
2.4. Measurement of Food Intake
2.5. Measurement of Body Weight
2.6. Intraperitoneal Glucose Tolerance Test
2.7. Blood Samples Collection and Preparation of Serum
2.8. Measurement of Organ Weight
2.9. Determination of Lipid Profile Parameters
2.10. Statistical Analysis
3. Results
3.1. Effect of Jackfruit Seed Powder on Food Intake of Mice
3.2. Effect of Jackfruit Seed Powder on Body Weight of Mice
3.3. Effect of Jackfruit Seed Powder on Glucose Tolerance in Mice
3.4. Effect of Jackfruit Seed Powder on Organ Weight of Mice
3.5. Effect of Jackfruit Seed Powder on Lipid Profile Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranasinghe, R.A.S.N.; Maduwanthi, S.D.T.; Marapana, R.A.U.J. Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. Int. J. Food Sci. 2019, 1, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Shivashankara, A.R.; Haniadka, R.; Dsouza, J.; Bhat, H.P. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): A review. Food Res. Int. 2011, 44, 1800–1811. [Google Scholar] [CrossRef]
- De Faria, A.F.; De Rosso, V.V.; Mercadante, A.Z. Carotenoid Composition of Jackfruit (Artocarpus heterophyllus), Determined by HPLC-PDA-MS/MS. Plant Foods Hum. Nutr. 2009, 64, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T. Development and Quality Evaluation of Bread Supplemented with Jackfruit Seed Flour. Int. J. Nutr. Food Sci. 2014, 3, 484. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture), NRCS (Natural Resources Conservation Service) (2017) The PLANTS Database. National Plant Data Team, Greensboro, North California. Available online: https://plants.usda.gov (accessed on 19 November 2019).
- Chrips, N.R.; Balasingh, R.G.S.; Kingston, C. Nutrient constituents of neglected varieties of Artocarpus heterophyllus Lam. from Kanyakumari district, South India. J. Basic Appl. Biol. 2008, 2, 36–37. [Google Scholar]
- Kareem, O.; Ali, T.; Dar, L.A.; Mir, S.A.; Rashid, R.; Nazli, N.; Gulzar, T.; Bader, G.N. Positive Health Benefits of Saponins from Edible Legumes: Phytochemistry and Pharmacology. In Edible Plants in Health and Diseases; Masoodi, M.H., Rehman, M.U., Eds.; Volume II: Phytochemical and Pharmacological Properties; Springer: Singapore, 2022; pp. 279–298. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Ho, C.-T.; Pan, M.-H. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef]
- Maurya, P.; Mogra, R. Assessment of Consumption Practices of Jackfruit (Artocarpus heterophyllus Lam) in the Villages of Jalalpur Block, District Ambedkar Nagar (Uttar Pradesh) India. Adv. Life Sci. 2016, 5, 1638–1644. [Google Scholar]
- Khan, A.U.; Ema, I.J.; Faruk, M.R.; Tarapder, S.A.; Khan, A.U.; Noreen, S.; Adnan, M. A Review on Importance of Artocarpus heterophyllus L. (Jackfruit). J. Multidiscip. Appl. Nat. Sci. 2021, 1, 106–116. [Google Scholar] [CrossRef]
- Waghmare, R.; Memon, N.; Gat, Y.; Gandhi, S.; Kumar, V.; Panghal, A. Jackfruit seed: An accompaniment to functional foods. Braz. J. Food Technol. 2019, 22. [Google Scholar] [CrossRef]
- Swami, S.B.; Kalse, S.B. Jackfruit (Artocarpus heterophyllus): Biodiversity, Nutritional Contents, and Health. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2237–2259. [Google Scholar] [CrossRef]
- Goswami, C.; Hossain, M.A.; Mortuza, M.G.; Islam, R. Physicochemical parameters of jackfruit (Artocarpus heterophyllus Lam) seeds in different growing areas. J. Biores. 2010, 2, 1–5. [Google Scholar] [CrossRef]
- Caspard, H.; Jabbour, S.; Hammar, N.; Fenici, P.; Sheehan, J.J.; Kosiborod, M. Recent trends in the prevalence of type 2 diabetes and the association with abdominal obesity lead to growing health disparities in the USA: An analysis of the NHANES surveys from 1999 to 2014. Diabetes Obes. Metab. 2018, 20, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, P766–P781. [Google Scholar] [CrossRef]
- Aguilera, A.A.; Díaz, G.H.; Barcelata, M.L.; Guerrero, O.A.; Oliart Ros, R.M. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J. Nutr. Biochem. 2004, 15, 350–357. [Google Scholar] [CrossRef]
- El Hafidi, M.; Cuéllar, A.; Ramírez, J.; Baos, G. Effect of sucrose addition to drinking water, that induces hypertension in the rats, on liver microsomal Δ9 and Δ5-desaturase activities. J. Nutr. Biochem. 2001, 12, 396–403. [Google Scholar] [CrossRef]
- Oron-Herman, M.; Kamari, Y.; Grossman, E.; Yeger, G.; Peleg, E.; Shabtay, Z.; Shamiss, A.; Sharabi, Y. Metabolic Syndrome: Comparison of the Two Commonly Used Animal Models. Am. J. Hypertens. 2008, 21, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Torres-Villalobos, G.; Hamdan-Pérez, N.; Tovar, A.R.; Ordaz-Nava, G.; Martínez-Benítez, B.; Torre-Villalvazo, I.; Morán-Ramos, S.; Díaz-Villaseñor, A.; Noriega, L.G.; Hiriart, M.; et al. Combined high-fat diet and sustained high sucrose consumption promotes NAFLD in a murine model. Ann. Hepatol. 2015, 14, 540–546. [Google Scholar] [CrossRef]
- Noor, F. Physicochemical Properties of Flour and Extraction of Starch from Jackfruit Seed. Int. J. Nutr. Food Sci. 2014, 3, 347. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Abidi, A.B.; Upadhyay, R.; Singh, A. Proximate composition of jack fruit seeds. J. Food Sci. Technol. 1988, 25, 308–309. [Google Scholar]
- Bhat, A.V.; Pattabiraman, T.N. Protease inhibitors from jackfruit seed (Artocarpus integrifolia). J. Biosci. 1989, 14, 351–365. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Axelsen, M.; Augustin, L.S.A.; Vuksan, V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr. Opin. Lipidol. 2000, 11, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Goswami, C.; Chacrabati, R. Chapter 14-Jackfruit (Artocarpus heterophylus). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 317–335. ISBN 978-0-12-408117-8. [Google Scholar]
- Ulla, A.; Alam, M.A.; Sikder, B.; Sumi, F.A.; Rahman, M.M.; Habib, Z.F.; Mohammed, M.K.; Subhan, N.; Hossain, H.; Reza, H.M. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC Complement. Altern. Med. 2017, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Santoso, P.; Amelia, A.; Rahayu, R. Jicama (Pachyrhizus erosus) fiber prevents excessive blood glucose and body weight increase without affecting food intake in mice fed with high-sugar diet. J. Adv. Vet. Anim. Res. 2019, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, J.; Ji, K.; Zhang, P. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci. Rep. 2016, 6, 32953. [Google Scholar] [CrossRef] [PubMed]
- Maejima, Y.; Rita, R.S.; Santoso, P.; Aoyama, M.; Hiraoka, Y.; Nishimori, K.; Gantulga, D.; Shimomura, K.; Yada, T. Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-fos induction in limited brain areas. Neuroendocrinology 2015, 101, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J. Methods of Blood Collection in the Mouse. Lab Anim. 2000, 29, 47–53. [Google Scholar]
- Richmond, W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 1973, 19, 1350–1356. [Google Scholar] [CrossRef]
- Cole, T.G.; Klotzsch, S.G.; Namara, M.C. Measurement of triglyceride concentration. In Handbook of lipoprotein Testing, 2nd ed.; Rifai, N., Warnick, G., Domiminiczak, M., Eds.; AACC Press: Washington, DC, USA, 1997; pp. 115–126. [Google Scholar]
- Henry, R.J.; Winkleman, J.W.; Cannon, D.C. Clinical Chemistry-Principles and Technics, 2nd ed.; Harper & Row Publishers: New York, NY, USA, 1974. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Santoso, P.; Maejima, Y.; Kumamoto, K.; Takenoshita, S.; Shimomura, K. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Neuroreport 2015, 26, 820–826. [Google Scholar] [CrossRef]
- Benton, D.; Young, H.A. Reducing Calorie Intake May Not Help You Lose Body Weight. Perspect. Psychol. Sci. 2017, 12, 703–714. [Google Scholar] [CrossRef]
- Oo, S.S.; Rao, U.S.M.; Zin, T. Prevalence and factors associated with obesity among adult at the Kampung Kolam, East Coast Malaysian Peninsula—A cross sectional study. Int. J. Pharm. Pharm. Sci. 2017, 9, 273–281. [Google Scholar] [CrossRef]
- El-Wakkad, A.; Hassan, N.E.M.; El-Zayat, S.R.; Sibaii, H.; El-Masry, S.A.E.R. Multiple markers of diabetes in relation to abdominal obesity in obese egyptian adolescent girls. Int. J. Pharm. Pharm. Sci. 2012, 4, 276–281. [Google Scholar]
- Vellers, H.L.; Letsinger, A.C.; Walker, N.R.; Granados, J.Z.; Lightfoot, J.T. High fat high sugar diet reduces voluntary wheel running in mice independent of sex hormone involvement. Front. Physiol. 2017, 8, 628. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.J.; Te Morenga, L. Sugar and type 2 diabetes. Br. Med. Bull. 2016, 120, 43–53. [Google Scholar] [CrossRef]
- Barrière, D.A.; Noll, C.; Roussy, G.; Lizotte, F.; Kessai, A.; Kirby, K.; Belleville, K.; Beaudet, N.; Longpré, J.M.; Carpentier, A.C.; et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci. Rep. 2018, 8, 424. [Google Scholar] [CrossRef]
- Andrikopoulos, S.; Blair, A.R.; Deluca, N.; Fam, B.C.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1323–E1332. [Google Scholar] [CrossRef]
- Watters, K.; Blaisdell, P. Reduction of Glycemic and Lipid Levels in db/db Diabetic Mice by Psyllium Plant Fiber. Diabetes 1989, 38, 1528–1533. [Google Scholar] [CrossRef]
- Mannan, M.A.; Jannat, K.; Rahmatullah, M. Hyperglycemic effect of Artocarpus heterophyllus seed methanol extract. World J. Pharm. Res. 2018, 7, 197–203. [Google Scholar] [CrossRef]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Simons, L.A.; Balasubramaniam, S.; von Konigsmark, M.; Parfitt, A.; Simons, J.; Peters, W. On the effect of garlic on plasma lipids and lipoproteins in mild hypercholesterolaemia. Atherosclerosis 1995, 113, 219–225. [Google Scholar] [CrossRef]
- Zeb, F.; Safdar, M.; Fatima, S.; Khan, S.; Alam, S.; Muhammad, M.; Syed, A.; Habib, F.; Shakoor, H. Supplementation of garlic and coriander seed powder: Impact on body mass index, lipid profile and blood pressure of hyperlipidemic patients. Pak. J. Pharm. Sci. 2018, 31, 1935–1941. [Google Scholar] [PubMed]
Ingredients of Normal Lab Diet | Percent |
---|---|
Wheat | 40% |
Wheat bran | 20% |
Polished Rice | 5.5% |
Fish meal | 10.0% |
Oil cake | 6.0% |
Gram | 0.39% |
Pulses | 0.39% |
Milk | 0.38% |
Soybean Oil | 1.5% |
Molasses | 0.095% |
Salt | 0.095% |
Embavit (vitamin) | 0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, C.; Kazal, M.K.H.; Alam, O.; Moon, R.J.; Khatun, K.; Hossan, M.; Chacrabati, R. Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice. Biol. Life Sci. Forum 2021, 6, 92. https://doi.org/10.3390/Foods2021-10970
Goswami C, Kazal MKH, Alam O, Moon RJ, Khatun K, Hossan M, Chacrabati R. Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice. Biology and Life Sciences Forum. 2021; 6(1):92. https://doi.org/10.3390/Foods2021-10970
Chicago/Turabian StyleGoswami, Chayon, Md. Kamrul Hasan Kazal, Ohi Alam, Romana Jahan Moon, Khadiza Khatun, Moriam Hossan, and Rakhi Chacrabati. 2021. "Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice" Biology and Life Sciences Forum 6, no. 1: 92. https://doi.org/10.3390/Foods2021-10970
APA StyleGoswami, C., Kazal, M. K. H., Alam, O., Moon, R. J., Khatun, K., Hossan, M., & Chacrabati, R. (2021). Jackfruit Seed Powder Supplementation Attenuates High-Sugar Diet-Induced Hyperphagia and Hyperglycemia in Mice. Biology and Life Sciences Forum, 6(1), 92. https://doi.org/10.3390/Foods2021-10970