Status of the muEDM Experiment at PSI †
Abstract
:1. Introduction
2. A Frozen-Spin-Based Muon EDM Search at PSI
3. R&D Progress at PSI
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2011, 192, 18. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 1967, 5, 32–35. [Google Scholar]
- Chupp, T.; Fierlinger, P.; Ramsey-Musolf, M.; Singh, J. Electric dipole moments of atoms, molecules, nuclei, and particles. Rev. Mod. Phys. 2019, 91, 015001. [Google Scholar] [CrossRef]
- Khaw, K.S.; Nakai, Y.; Sato, R.; Shigekami, Y.; Zhang, Z. A large muon EDM from dark matter. J. High Energy Phys. 2023, 2, 234. [Google Scholar] [CrossRef]
- Nakai, Y.; Sato, R.; Shigekami, Y. Muon electric dipole moment as a probe of flavor-diagonal CP violation. Phys. Lett. B 2022, 831, 137194. [Google Scholar] [CrossRef]
- Dermisek, R.; Hermanek, K.; McGinnis, N.; Yoon, S. Ellipse of Muon Dipole Moments. Phys. Rev. Lett. 2022, 129, 221801. [Google Scholar] [CrossRef]
- Crivellin, A.; Hoferichter, M.; Schmidt-Wellenburg, P. Combined explanations of (g−2)μ,e and implications for a large muon EDM. Phys. Rev. D 2018, 98, 113002. [Google Scholar] [CrossRef]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.C.; Cè, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Abi, B.; Albahri, T.; Al-Kilani, S.; Allspach, D.; Alonzi, L.P.; Anastasi, A.; Anisenkov, A.; Azfar, F.; Badgley, K.; Baeßler, S.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Khaw, K.S.; Yoshioka, T. Muon g-2: A review. Nucl. Phys. B 2022, 975, 115675. [Google Scholar] [CrossRef]
- Parker, R.H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191. [Google Scholar]
- Morel, L.; Yao, Z.; Cladé, P.; Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 2020, 588, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Myers, T.G.; Sukra, B.A.D.; Gabrielse, G. Measurement of the Electron Magnetic Moment. arXiv 2023, arXiv:2209.13084. [Google Scholar] [CrossRef]
- Crivellin, A.; Hoferichter, M. Hints of lepton flavor universality violations. Science 2021, 374, 1051. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W.; Bousquet, B.; Brown, H.N.; Bunce, G.; Carey, R.M.; Cushman, P.; Danby, G.T.; Debevec, P.T.; Deile, M.; Deng, H.; et al. An Improved Limit on the Muon Electric Dipole Moment. Phys. Rev. D 2009, 80, 052008. [Google Scholar]
- Pospelov, M.; Ritz, A. CKM benchmarks for electron electric dipole moment experiments. Phys. Rev. D 2014, 89, 056006. [Google Scholar]
- Yamaguchi, Y.; Yamanaka, N. Large long-distance contributions to the electric dipole moments of charged leptons in the standard model. Phys. Rev. Lett. 2020, 125, 241802. [Google Scholar]
- Chislett, R. The muon EDM in the g-2 experiment at Fermilab. EPJ Web Conf. 2016, 118, 01005. [Google Scholar] [CrossRef]
- Abe, M.; Bae, S.; Beer, G.; Bunce, G.; Choi, H.; Choi, S.; Chung, M.; Da Silva, W.; Eidelman, S.; Finger, M.; et al. A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment. Prog. Theor. Exp. Phys. 2019, 2019, 053C02. [Google Scholar]
- Farley, F.J.M.; Jungmann, K.; Miller, J.P.; Morse, W.M.; Orlov, Y.F.; Roberts, B.L.; Semertzidis, Y.K.; Silenko, A.; Stephenson, E.J. A New method of measuring electric dipole moments in storage rings. Phys. Rev. Lett. 2004, 93, 052001. [Google Scholar]
- Adelmann, A.; Kirch, K.; Onderwater, C.J.G.; Schietinger, T. Compact storage ring to search for the muon electric dipole moment. J. Phys. G 2010, 37, 085001. [Google Scholar]
- Adelmann, A.; Backhaus, M.; Barajas, C.C.; Berger, N.; Bowcock, T.; Calzolaio, C.; Cavoto, G.; Chislett, R.; Crivellin, A.; Daum, M.; et al. Search for a muon EDM using the frozen-spin technique. arXiv 2021, arXiv:2102.08838. [Google Scholar]
- Khaw, K.S.; Adelmann, A.; Backhaus, M.; Berger, N.; Daum, M.; Giovannozzi, M.; Kirch, K.; Knecht, A.; Papa, A.; Petitjean, C.; et al. Search for the muon electric dipole moment using frozen-spin technique at PSI. PoS 2022, 402, 136. [Google Scholar]
- Sakurai, M.; Adelmann, A.; Backhaus, M.; Berger, N.; Daum, M.; Khaw, K.S.; Kirch, K.; Knecht, A.; Papa, A.; Petitjean, C.; et al. muEDM: Towards a Search for the Muon Electric Dipole Moment at PSI Using the Frozen-spin Technique. JPS Conf. Proc. 2022, 37, 020604. [Google Scholar]
- Beijing Gaoneng Kedi Technology Co., Ltd. Available online: http://www.gaonengkedi.com/pro.asp?classID1=28 (accessed on 7 June 2023).
- Novel Device Laboratory. Available online: http://www.ndl-sipm.net/indexeng.html (accessed on 7 June 2023).
- Francesconi, M.; Baldini, A.; Benmansour, H.; Cei, F.; Chiappini, M.; Chiarello, G.; Galli, L.; Grassi, M.; Hartmann, U.; Morsani, F.; et al. The WaveDAQ integrated Trigger and Data Acquisition System for the MEG II experiment. arXiv 2023, arXiv:1806.09218. [Google Scholar]
- Ritt, S.; Dinapoli, R.; Hartmann, U. Application of the DRS chip for fast waveform digitizing. Nucl. Instrum. Methods A 2010, 623, 486–488. [Google Scholar] [CrossRef]
Parameters | muEDM Phase I | muEDM Phase II | ||
---|---|---|---|---|
Factor | Event Rate (Hz) | Factor | Event Rate (Hz) | |
Muon flux (/s) | - | - | ||
Channel transmission | 0.03 | 0.005 | ||
Injection efficiency | 0.017 | 0.6 | ||
detection efficiency | 0.25 | 0.25 | ||
Detected per 200 days | ||||
Beam momentum (MeV/c) | ≈30 | 125 | ||
Gamma factor, | 1.04 | 1.56 | ||
Storage magnetic field, B (T) | 3 | 3 | ||
Electric field, (kV/cm) | 3 | 20 | ||
Muon decay asymmetry, | 0.3 | 0.3 | ||
Initial polarization, | 0.95 | 0.95 | ||
Muon EDM Sensitivity (cm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaw, K.S.; Chen, C.; Giovannozzi, M.; Hu, T.; Lv, M.; Ng, J.K.; Papa, A.; Schmidt-Wellenburg, P.; Vitali, B.; Wong, G.M., on behalf of the muEDM collaboration. Status of the muEDM Experiment at PSI. Phys. Sci. Forum 2023, 8, 50. https://doi.org/10.3390/psf2023008050
Khaw KS, Chen C, Giovannozzi M, Hu T, Lv M, Ng JK, Papa A, Schmidt-Wellenburg P, Vitali B, Wong GM on behalf of the muEDM collaboration. Status of the muEDM Experiment at PSI. Physical Sciences Forum. 2023; 8(1):50. https://doi.org/10.3390/psf2023008050
Chicago/Turabian StyleKhaw, Kim Siang, Cheng Chen, Massimo Giovannozzi, Tianqi Hu, Meng Lv, Jun Kai Ng, Angela Papa, Philipp Schmidt-Wellenburg, Bastiano Vitali, and Guan Ming Wong on behalf of the muEDM collaboration. 2023. "Status of the muEDM Experiment at PSI" Physical Sciences Forum 8, no. 1: 50. https://doi.org/10.3390/psf2023008050
APA StyleKhaw, K. S., Chen, C., Giovannozzi, M., Hu, T., Lv, M., Ng, J. K., Papa, A., Schmidt-Wellenburg, P., Vitali, B., & Wong, G. M., on behalf of the muEDM collaboration. (2023). Status of the muEDM Experiment at PSI. Physical Sciences Forum, 8(1), 50. https://doi.org/10.3390/psf2023008050