Proposal for Diet Supplementation to Prevent Knee Osteoarthritis in Female Soccer Players
Abstract
:1. Introduction
2. Etiology, Mechanisms and Diagnosis of Knee Osteoarthritis
2.1. Risk Factors in Knee Osteoarthritis
2.2. Physiopathology of Osteoarthritis
2.3. Diagnosis of Knee Osteoarthritis
3. Knee Osteoarthritis in Athletes
4. Diet and Supplement Strategies to Prevent Knee Osteoarthritis in Female Soccer Players
4.1. Dietetic Considerations in Soccer
4.2. Omega-3 Fatty Acids
4.3. Curcumin
4.4. Plant Extracts
4.5. Vitamin D
4.6. Chondroitin and Glucosamine
4.7. Collagen
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco-García, F.J.; Hernández-Royo, A.; Trigueros, J.A.; Gimeno-Marqués, A.; Fernández-Portal, L.; Badia-Llach, X. Guía de Práctica Clínica en Artrosis de Rodilla; You & US: Madrid, Spain, 2003. [Google Scholar]
- Hunter, D.J.; Felson, D.T. Osteoarthritis. BMJ 2006, 332, 639–642. [Google Scholar] [CrossRef]
- Blanco, F.J.; Silva-Díaz, M.; Quevedo-Vila, V.; Seoane-Mato, D.; Pérez-Ruiz, F.; Juan-Mas, A.; Pego-Reigosa, J.M.; Narváez, J.; Quilis, N.; Cortés, R.; et al. EPISER2016 Project Working Group. Prevalence of symptomatic osteoarthritis in Spain: EPISER2016 study. Reumatol. Clin. 2021, 17, 461–470. [Google Scholar] [CrossRef]
- Spahn, G.; Schiele, R.; Hofmann, G.O.; Schiltenwolf, M.; Grifka, J.; Vaitl, T.; Schneider, S.; Liebers, F.; Klinger, H.M. Die Prävalenz der radiologischen Gonarthrose in Bezug zu Lebensalter, Geschlecht, Jahrgangskohorte und ethnischer Zugehörigkeit. Eine Metaanalyse [The prevalence of radiological osteoarthritis in relation to age, gender, birth-year cohort, and ethnic origins]. Z. Orthopädie Unfallchirurgie 2011, 149, 145–152. [Google Scholar] [CrossRef]
- Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ. 2003, 81, 646–656. [Google Scholar] [PubMed]
- Guermazi, A.; Niu, J.; Hayashi, D.; Roemer, F.W.; Englund, M.; Neogi, T.; Aliabadi, P.; McLennan, C.E.; Felson, D.T. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: Population based observational study (Framingham Osteoarthritis Study). BMJ 2012, 345, e5339. [Google Scholar] [CrossRef] [PubMed]
- Courties, A.; Kouki, I.; Soliman, N.; Mathieu, S.; Sellam, J. Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthr. Cartil. 2024, 32, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Steinwachs, M.R.; Engebretsen, L.; Brophy, R.H. Scientific Evidence Base for Cartilage Injury and Repair in the Athlete. Cartilage 2012, 3, 11S–17S. [Google Scholar] [CrossRef]
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Ostenberg, A.; Roos, H. Injury risk factors in female European football. A prospective study of 123 players during one season. Scand. J. Med. Sci. Sports 2000, 10, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Noriega-González, D.; Caballero-García, A.; Roche, E.; Álvarez-Mon, M.; Córdova, A. Inflammatory Process on Knee Osteoarthritis in Cyclists. J. Clin. Med. 2023, 12, 3703. [Google Scholar] [CrossRef] [PubMed]
- Driban, J.B.; Hootman, J.M.; Sitler, M.R.; Harris, K.P.; Cattano, N.M. Is Participation in Certain Sports Associated with Knee Osteoarthritis? A Systematic Review. J. Athl. Train. 2017, 52, 497–506. [Google Scholar] [CrossRef]
- Nehrer, S.; Neubauer, M.; Stotter, C. Osteoarthritis and/or sports. Dtsch. Z. Sportmed. 2019, 70, 169–174. [Google Scholar] [CrossRef]
- Jakobsen, J.R.; Krogsgaard, M.R. The Myotendinous Junction-A Vulnerable Companion in Sports. A Narrative Review. Front. Physiol. 2021, 12, 635561. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, C.; Nguyen, C.; Lefevre-Colau, M.M.; Rannou, F.; Poiraudeau, S. Risk factors and burden of osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 134–138. [Google Scholar] [CrossRef]
- Wluka, A.E.; Lombard, C.B.; Cicuttini, F.M. Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol. 2013, 9, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Silverwood, V.; Blagojevic-Bucknall, M.; Jinks, C.; Jordan, J.L.; Protheroe, J.; Jordan, K.P. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2015, 23, 507–515. [Google Scholar] [CrossRef]
- Kulkarni, K.; Karssiens, T.; Kumar, V.; Pandit, H. Obesity and osteoarthritis. Maturitas 2016, 89, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Aiello, F.C.; Szychlinska, M.A.; Di Rosa, M.; Castrogiovanni, P.; Mobasheri, A. Osteoarthritis in the XXIst century: Risk factors and behaviours that influence disease onset and progression. Int. J. Mol. Sci. 2015, 16, 6093–6112. [Google Scholar] [CrossRef] [PubMed]
- López-Valenciano, A.; Ruiz-Pérez, I.; Garcia-Gómez, A.; Vera-Garcia, F.J.; De Ste Croix, M.; Myer, G.D.; Ayala, F. Epidemiology of injuries in professional football: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 711–718. [Google Scholar] [CrossRef]
- Madry, H.; Kon, E.; Condello, V.; Peretti, G.M.; Steinwachs, M.; Seil, R.; Berruto, M.; Engebretsen, L.; Filardo, G.; Angele, P. Early osteoarthritis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.Y.; Pelletier, J.P.; Martel-Pelletier, J.; Henrotin, Y. Osteoarthritis: Clinical and Experimental Aspects; Springer: Berlin, Germany, 1999. [Google Scholar]
- Xu, L.; Polur, I.; Servais, J.M.; Hsieh, S.; Lee, P.L.; Goldring, M.B.; Li, Y. Intact pericellular matrix of articular cartilage is required for unactivated discoidin domain receptor 2 in the mouse model. Am. J. Pathol. 2011, 179, 1338–1346. [Google Scholar] [CrossRef]
- Sakata, R.; McNary, S.M.; Miyatake, K.; Lee, C.A.; Van den Bogaerde, J.M.; Marder, R.A.; Reddi, A.H. Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am. J. Sports Med. 2015, 43, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Neu, C.P.; Reddi, A.H.; Komvopoulos, K.; Schmid, T.M.; Di Cesare, P.E. Increased friction coefficient and superficial zone protein expression in patients with advanced osteoarthritis. Arthritis Rheum. 2010, 62, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, J.; Amrein, M.W.; Matyas, J.R. Microscale surface friction of articular cartilage in early osteoarthritis. J. Mech. Behav. Biomed. Mater. 2013, 25, 11–22. [Google Scholar] [CrossRef]
- Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef]
- Goldring, M.B.; Berenbaum, F. Emerging targets in osteoarthritis therapy. Curr. Opin. Pharmacol. 2015, 22, 51–63. [Google Scholar] [CrossRef]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, G.M.; van Tol, A.W.; Bergink, A.P.; Belo, J.N.; Bernsen, R.M.; Reijman, M.; Pols, H.A.; Bierma-Zeinstra, S.M. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Song, J.; Felson, D.T.; Cahue, S.; Shamiyeh, E.; Dunlop, D.D. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 2001, 286, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; McLaughlin, S.; Goggins, J.; LaValley, M.P.; Gale, M.E.; Totterman, S.; Li, W.; Hill, C.; Gale, D. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann. Intern. Med. 2003, 139, 330–336. [Google Scholar] [CrossRef]
- Taljanovic, M.S.; Graham, A.R.; Benjamin, J.B.; Gmitro, A.F.; Krupinski, E.A.; Schwartz, S.A.; Hunter, T.B.; Resnick, D.L. Bone marrow edema pattern in advanced hip osteoarthritis: Quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skelet. Radiol. 2008, 37, 423–431. [Google Scholar] [CrossRef]
- Maneiro, E.; Martín, M.A.; de Andres, M.C.; López-Armada, M.J.; Fernández-Sueiro, J.L.; del Hoyo, P.; Galdo, F.; Arenas, J.; Blanco, F.J. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003, 48, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef] [PubMed]
- Scanzello, C.R. Chemokines and inflammation in osteoarthritis: Insights from patients and animal models. J. Orthop. Res. 2017, 35, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.M.; Arden, N.K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 92–101. [Google Scholar] [CrossRef]
- van Mechelen, W.; Hlobil, H.; Kemper, H.C. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med. 1992, 14, 82–99. [Google Scholar] [CrossRef]
- Kujala, U.M.; Kettunen, J.; Paananen, H.; Aalto, T.; Battié, M.C.; Impivaara, O.; Videman, T.; Sarna, S. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum. 1995, 38, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Roos, H.; Laurén, M.; Adalberth, T.; Roos, E.M.; Jonsson, K.; Lohmander, L.S. Knee osteoarthritis after meniscectomy: Prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998, 41, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Gelber, A.C.; Hochberg, M.C.; Mead, L.A.; Wang, N.Y.; Wigley, F.M.; Klag, M.J. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann. Intern. Med. 2000, 133, 321–328. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am. J. Sports Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Malfait, A.M.; Schnitzer, T.J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 2013, 9, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Alfonso, V.; Rosello-Sastre, E.; Martinez-Sanjuan, V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. Am. J. Knee Surg. 1999, 12, 29–40. [Google Scholar]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength Cond. Res. 2010, 24, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Kabacinski, J.; Szozda, P.M.; Mackala, K.; Murawa, M.; Rzepnicka, A.; Szewczyk, P.; Dworak, L.B. Relationship between Isokinetic Knee Strength and Speed, Agility, and Explosive Power in Elite Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 671. [Google Scholar] [CrossRef]
- Stepinski, M.; Ceylan, H.I.; Zwierko, T. Seasonal variation of speed, agility and power performance in elite female soccer players: Effect of functional fitness. Phys. Act. Rev. 2020, 8, 16–25. [Google Scholar] [CrossRef]
- Krustrup, P.; Zebis, M.; Jensen, J.M.; Mohr, M. Game-induced fatigue patterns in elite female soccer. J. Strength Cond. Res. 2010, 24, 437–441. [Google Scholar] [CrossRef] [PubMed]
- von Porat, A.; Roos, E.M.; Roos, H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 2004, 63, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.D.; Hulse, M.A.; Wilkinson, C.; Hodson, A.; Gibson, M. The association football medical research programme: An audit of injuries in professional football. Br. J. Sports Med. 2001, 35, 43–47. [Google Scholar] [CrossRef]
- Junge, A.; Dvorak, J. Soccer injuries: A review on incidence and prevention. Sports Med. 2004, 34, 929–938. [Google Scholar] [CrossRef]
- Roth, T.S.; Osbahr, D.C. Knee Injuries in Elite Level Soccer Players. Am. J. Orthop. 2018, 47, 10.12788–ajo.2018. [Google Scholar] [CrossRef]
- Wong, P.; Hong, Y. Soccer injury in the lower extremities. Br. J. Sports Med. 2005, 39, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, A.; Bolm-Audorff, U.; Seidler, A. The Risk of Knee Osteoarthritis in Professional Soccer Players—A Systematic Review with Meta-Analyses. Dtsch. Arztebl. Int. 2021, 118, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Junge, A.; Kindermann, W.; Dvorak, J. Injuries in female soccer players: A prospective study in the German national league. Am. J. Sports Med. 2005, 33, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Engström, B.; Johansson, C.; Törnkvist, H. Soccer injuries among elite female players. Am. J. Sports Med. 1991, 19, 372–375. [Google Scholar] [CrossRef]
- Söderman, K.; Adolphson, J.; Lorentzon, R.; Alfredson, H. Injuries in adolescent female players in European football: A prospective study over one outdoor soccer season. Scand. J. Med. Sci. Sports 2001, 11, 299–304. [Google Scholar] [CrossRef]
- Sullivan, J.A.; Gross, R.H.; Grana, W.A.; Garcia-Moral, C.A. Evaluation of injuries in youth soccer. Am. J. Sports Med. 1980, 8, 325–327. [Google Scholar] [CrossRef]
- Del Coso, J.; Rodas, G.; Buil, M.Á.; Sánchez-Sánchez, J.; López, P.; González-Ródenas, J.; Gasulla-Anglés, P.; López-Samanes, Á.; Hernández-Sánchez, S.; Iztueta, A.; et al. Association of the ACTN3 rs1815739 Polymorphism with Physical Performance and Injury Incidence in Professional Women Football Players. Genes 2022, 13, 1635. [Google Scholar] [CrossRef] [PubMed]
- Joo, C.H. Epidemiology of soccer injuries in Korea women national team for 5 years. J. Exerc. Rehabil. 2022, 18, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Nguyen, J.N.; Hwang, C.E.; Abrams, G.D. Increased Lower Extremity Injury Risk Associated With Player Load and Distance in Collegiate Women’s Soccer. Orthop. J. Sports Med. 2021, 9, 23259671211048248. [Google Scholar] [CrossRef]
- Meeuwisse, W.H.; Tyreman, H.; Hagel, B.; Emery, C. A dynamic model of etiology in sport injury: The recursive nature of risk and causation. Clin. J. Sport. Med. 2007, 17, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Taimela, S.; Osterman, L.; Kujala, U.; Lehto, M.; Korhonen, T.; Alaranta, H. Motor ability and personality with reference to soccer injuries. J. Sports Med. Phys. Fit. 1990, 30, 194–201. [Google Scholar]
- Watson, A.W. Sports injuries related to flexibility, posture, acceleration, clinical defects, and previous injury, in high-level players of body contact sports. Int. J. Sports Med. 2001, 22, 222–225. [Google Scholar] [CrossRef]
- Roos, H.; Lindberg, H.; Gärdsell, P.; Lohmander, L.S.; Wingstrand, H. The prevalence of gonarthrosis and its relation to meniscectomy in former soccer players. Am. J. Sports Med. 1994, 22, 219–222. [Google Scholar] [CrossRef]
- Roos, H.; Ornell, M.; Gärdsell, P.; Lohmander, L.S.; Lindstrand, A. Soccer after anterior cruciate ligament injury--an incompatible combination? A national survey of incidence and risk factors and a 7-year follow-up of 310 players. Acta Orthop. Scand. 1995, 66, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Söderman, K.; Alfredson, H.; Pietilä, T.; Werner, S. Risk factors for leg injuries in female soccer players: A prospective investigation during one out-door season. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 313–321. [Google Scholar] [CrossRef]
- Mather, R.C., 3rd; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach, B.R., Jr.; Spindler, K.P.; MOON Knee Group. Societal and economic impact of anterior cruciate ligament tears. J. Bone Joint Surg. Am. 2013, 95, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.C.; Ferreira, D.; Caetano, C.; Granja, D.; Pinto, R.; Mendes, B.; Sousa, M. Nutrition and Supplementation in Soccer. Sports 2017, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, M.V.; Lundsgaard, A.M.; Christensen, P.M.; Christensen, L.; Randers, M.B.; Mohr, M.; Nybo, L.; Kiens, B.; Fritzen, A.M. Nutritional optimization for female elite football players-topical review. Scand. J. Med. Sci. Sports 2022, 32 (Suppl. S1), 81–104. [Google Scholar] [CrossRef]
- García-Rovés, P.M.; García-Zapico, P.; Patterson, A.M.; Iglesias-Gutiérrez, E. Nutrient intake and food habits of soccer players: Analyzing the correlates of eating practice. Nutrients 2014, 6, 2697–2717. [Google Scholar] [CrossRef]
- Keen, R. Nutrition-Related Considerations in Soccer: A Review. Am. J. Orthop. 2018, 47, 12. [Google Scholar] [CrossRef]
- Arden, N.K.; Perry, T.A.; Bannuru, R.R.; Bruyère, O.; Cooper, C.; Haugen, I.K.; Hochberg, M.C.; McAlindon, T.E.; Mobasheri, A.; Reginster, J.Y. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines. Nat. Rev. Rheumatol. 2021, 17, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Franklin, D.K.; Das, A.; Hirani, V. The effects of dietary patterns and food groups on symptomatic osteoarthritis: A systematic review. Nutr. Diet. 2023, 80, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Longo, U.G.; Denaro, V. Novel approaches for the management of tendinopathy. J. Bone Joint Surg. Am. 2010, 92, 2604–2613. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Moretti, L.; Baglioni, M.; Covelli, I.; Bianchi, F.P.; Citraro, A.; Moretti, B. Efficacy of Shock Waves Combined with Adjuvant Therapy with Tendon Supplement in the Treatment of Plantar Fasciitis: A Prospective Randomized Study. J. Food Nutr. Res. 2021, 9, 148–153. [Google Scholar]
- Notarnicola, A.; Maccagnano, G.; Tafuri, S.; Fiore, A.; Pesce, V.; Moretti, B. Comparison of shock wave therapy and nutraceutical composed of Echinacea angustifolia, alpha lipoic acid, conjugated linoleic acid and quercetin (perinerv) in patients with carpal tunnel syndrome. Int. J. Immunopathol. Pharmacol. 2015, 28, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, A.I.; Olabiyi, O.O.; Duru, F.I.; Noronha, C.C.; Okanlawon, A.O. A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush achilles tendon injury. J. Med. Food 2011, 14, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Fusini, F.; Bisicchia, S.; Bottegoni, C.; Gigante, A.; Zanchini, F.; Busilacchi, A. Nutraceutical supplement in the management of tendinopathies: A systematic review. Muscles Ligaments Tendons J. 2016, 6, 48–57. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Arribalzaga, S.; Gutiérrez-Abejón, E.; Azarbayjani, M.A.; Mielgo-Ayuso, J.; Roche, E. Omega-3 Fatty Acid Supplementation on Post-Exercise Inflammation, Muscle Damage, Oxidative Response, and Sports Performance in Physically Healthy Adults-A Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 2044. [Google Scholar] [CrossRef] [PubMed]
- Lembke, P.; Capodice, J.; Hebert, K.; Swenson, T. Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J. Sports Sci. Med. 2014, 13, 151–156. [Google Scholar] [PubMed]
- Tsuchiya, Y.; Yanagimoto, K.; Nakazato, K.; Hayamizu, K.; Ochi, E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: A randomized, double-blind, placebo-controlled, parallel-group trial. Eur. J. Appl. Physiol. 2016, 116, 1179–1188. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Ueda, H.; Yanagimoto, K.; Kato, A.; Ochi, E. 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J. Int. Soc. Sports Nutr. 2021, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear factor-kappaB: Its role in health and disease. J. Mol. Med. 2004, 82, 434–448. [Google Scholar] [CrossRef]
- Witkin, J.; Li, X. Curcumin, an Active Constiuent of the Ancient Medicinal Herb Curcuma longa L.: Some Uses and the Establishment and Biological Basis of Medical Efficacy. CNS Neurol. Disord. Drug Targets 2013, 12, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Córdova, A.; Drobnic, F.; Noriega-González, D.; Caballero-García, A.; Roche, E.; Alvarez-Mon, M. Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023, 15, 384. [Google Scholar] [CrossRef]
- Smith, R.K.W.; McIlwraith, C.W. “One Health”O in tendinopathy research: Current concepts. J. Orthop. Res. 2021, 39, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Divya, C.; Gopi, S. The Effects of Bioavailable Curcumin (Cureit) on Delayed Onset Muscle Soreness Induced By Eccentric Continuous Exercise: A Randomized, Placebo-Controlled, Double-Blind Clinical Study. J. Med. Food 2020, 23, 545–553. [Google Scholar] [CrossRef]
- Hillman, A.R.; Gerchman, A.; O’Hora, E. Ten Days of Curcumin Supplementation Attenuates Subjective Soreness and Maintains Muscular Power Following Plyometric Exercise. J. Diet. Suppl. 2022, 19, 303–317. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Talalay, P. Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 1999, 20, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Birznieks, I.; Burton, A.R.; Macefield, V.G. The effects of experimental muscle and skin pain on the static stretch sensitivity of human muscle spindles in relaxed leg muscles. J. Physiol. 2008, 586, 2713–2723. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, T.; Yang, K.; Yu, G.; Li, J.; Xiang, W.; Chen, H. Efficacy and Safety of Curcumin and Curcuma longa Extract in the Treatment of Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front. Immunol. 2022, 13, 891822. [Google Scholar] [CrossRef]
- Quesada-Vazquez, S.; Eseberri, I.; Les, F.; Pérez-Matute, P.; Herrnaz-López, M.; Atgié, C.; López-Yus, M.; Aranaz, P.; Oteo, J.A.; Escoté, X.; et al. Polyphenols and metabolism: From present knowledge to future challenges. J. Physiol. Biochem. 2024, 80, 603–625. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, S.; Soubrier, M.; Peirs, C.; Monfoulet, L.E.; Boirie, Y.; Tournadre, A. A Meta-Analysis of the Impact of Nutritional Supplementation on Osteoarthritis Symptoms. Nutrients 2022, 14, 1607. [Google Scholar] [CrossRef] [PubMed]
- Angeline, M.E.; Ma, R.; Pascual-Garrido, C.; Voigt, C.; Deng, X.H.; Warren, R.F.; Rodeo, S.A. Effect of Diet-Induced Vitamin D Deficiency on Rotator Cuff Healing in a Rat Model. Am. J. Sports Med. 2014, 42, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Nossov, S.; Dines, J.S.; Murrell, G.A.C.; Rodeo, S.A.; Bedi, A. Biologic augmentation of tendon-to-bone healing: Scaffolds, mechanical load, vitamin D, and diabetes. Instr. Course Lect. 2014, 63, 451–462. [Google Scholar] [PubMed]
- Dougherty, K.; Dilisio, M.; Agrawal, D.K. Vitamin D and the immunomodulation of rotator cuff injury. J. Inflamm. Res. 2016, 9, 123–131. [Google Scholar] [CrossRef]
- Poulsen, R.; Zarei, A.; Sabokbar, A.; Hulley, P. Tendon, a Vitamin D-Responsive Tissue—Why the British weather may not just be bad for your bones. Int. J. Exp. Pathol. 2013, 94, A20. [Google Scholar]
- Henrotin, Y.; Mobasheri, A.; Marty, M. Is there any scientific evidence for the use of glucosamine in the management of human osteoarthritis? Arthritis Res. Ther. 2012, 14, 201. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, J.; Zhou, N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: A systematic review and meta-analysis. Arch. Orthop. Trauma. Surg. 2023, 143, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Sadigursky, D.; Magnavita, V.F.S.; Sá, C.K.C.; Monteiro, H.S.; Braghiroli, O.F.M.; Matos, M.A.A. Undenatured collagen type II for the treatment of osteoarthritis of the knee. Acta Ortop. Bras. 2022, 30, e240572. [Google Scholar] [CrossRef]
- Bagchi, D.; Misner, B.; Bagchi, M.; Kothari, S.C.; Downs, B.W.; Fafard, R.D.; Preuss, H.G. Effects of orally administered undenatured type II collagen against arthritic inflammatory diseases: A mechanistic exploration. Int. J. Clin. Pharmacol. Res. 2002, 22, 101–110. [Google Scholar] [PubMed]
- Lugo, J.P.; Saiyed, Z.M.; Lau, F.C.; Molina, J.P.; Pakdaman, M.N.; Shamie, A.N.; Udani, J.K. Undenatured type II collagen (UC-II®) for joint support: A randomized, double-blind, placebo-controlled study in healthy volunteers. J. Int. Soc. Sports Nutr. 2013, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Lugo, J.P.; Saiyed, Z.M.; Lane, N.E. Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: A multicenter randomized, double-blind, placebo-controlled study. Nutr. J. 2016, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Trentham, D.E.; Dynesius-Trentham, R.A.; Orav, E.J.; Combitchi, D.; Lorenzo, C.; Sewell, K.L.; Hafler, D.A.; Weiner, H.L. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993, 261, 1727–1730. [Google Scholar] [CrossRef]
- Crowley, D.C.; Lau, F.C.; Sharma, P.; Evans, M.; Guthrie, N.; Bagchi, M.; Bagchi, D.; Dey, D.K.; Raychaudhuri, S.P. Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: A clinical trial. Int. J. Med. Sci. 2009, 6, 312–321. [Google Scholar] [CrossRef]
- Tong, T.; Zhao, W.; Wu, Y.Q.; Chang, Y.; Qing-Tong, W.; Ling-Ling, Z.; Wei, W. Chicken type II collagen induced immune balance of main subtype of helper T cells in mesenteric lymphocytes in rats with collagen-induced arthritis. Inflamm. Res. 2010, 59, 369–377. [Google Scholar] [CrossRef]
- Nagler-Anderson, C.; Bober, L.A.; Robinson, M.E.; Siskind, G.W.; Thorbecke, G.J. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen. Proc. Natl. Acad. Sci. USA 1986, 83, 7443–7446. [Google Scholar] [CrossRef] [PubMed]
GENERAL | RELATED TO THE JOINT |
---|---|
Non-modifiable Genetics Age Sex Modifiable Overweight, obesity Nutrition Bone mineral density Comorbidities | Overloading Physical activity Particular sports actions Traumas Muscle strength Joint alignment Joint deformity Instability |
RISK FACTORS | COMMENTS |
---|---|
Repetitive impact | Sports that involve repetitive movements and significant stress on the knee joints (i.e., soccer, basketball, running, tennis). This can accelerate the wear and tear of the joint cartilage, leading to osteoarthritis. |
Previous injuries | Ligament or meniscus tears, increase the risk of developing osteoarthritis even after recovery. |
Joint overload | Sports that require high physical exertion (i.e., weightlifting, rugby) can increase the pressure on the knees, contributing to development of knee osteoarthritis. |
Duration of the sport practice | Developing knee osteoarthritis increases with age and the number of years spent playing a particular discipline. Therefore, high level athletes for many years are particularly susceptible. |
Improper technique and equipment | Improper footwear, poor technique or inappropriate training surfaces. |
SPORTS | ACTIONS FAVORING KNEE OSTEOARTHRITIS |
---|---|
Soccer | Repetitive twisting, abrupt changes in direction, and physical contact, increased risk of ligament and meniscus injuries |
Basketball | Frequent jumping, landing, and quick directional changes, microtraumas to the knees |
Running | Long distances, hard surfaces |
Weightlifting | Heavy lifting, pressure on the knee joints, improper technique |
Tennis | Quick lateral movements and abrupt stops, starts with substantial pressure on the knees |
RugbyAmerican football | High-intensity movements and rapid directional changes, frequent impacts and collisions |
Alpine skiing | Repetitive twists and turns, ligament injuries |
Gymnastics | Repetitive movements, landings, acrobatic maneuvers that require great control over the knee joints |
FACTOR | COMMENTS |
---|---|
Anatomy | Wider Q Angle (the angle between the quadriceps muscle and the patella). This angle can increase stress on the knee due to the wider pelvis that women have. |
Biomechanics | Women generally have greater joint laxity, which can make the knees less stable and more prone to ligament injuries such as anterior cruciate ligament tears, a known risk factor for osteoarthritis. |
Hormones | Hormonal fluctuations, particularly estrogen levels, can affect cartilage integrity and ligament laxity. This is relevant after menopause. |
Activity patterns | Differences in how women and men perform certain sports movements can also influence injury risk. For instance, women tend to have greater dynamic knee valgus (an inward collapse of the knees during flexion), which can increase stress on knee structures. |
NUTRACEUTICAL | MAIN WAY OF ACTION |
---|---|
Omega-3 fatty acids Curcumin | Anti-inflammatory action |
Herbal extracts | Antioxidants that can help reduce inflammation |
Vitamin D | Essential for calcium absorption necessary for bone repair |
Chondroitin and glucosamine | Reduce pain and improve joint function |
Collagen | Key component of cartilage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-García, A.; Noriega-González, D.C.; Caballero-Castillo, A.; Roche, E. Proposal for Diet Supplementation to Prevent Knee Osteoarthritis in Female Soccer Players. Dietetics 2025, 4, 8. https://doi.org/10.3390/dietetics4010008
Caballero-García A, Noriega-González DC, Caballero-Castillo A, Roche E. Proposal for Diet Supplementation to Prevent Knee Osteoarthritis in Female Soccer Players. Dietetics. 2025; 4(1):8. https://doi.org/10.3390/dietetics4010008
Chicago/Turabian StyleCaballero-García, Alberto, David C. Noriega-González, Aurora Caballero-Castillo, and Enrique Roche. 2025. "Proposal for Diet Supplementation to Prevent Knee Osteoarthritis in Female Soccer Players" Dietetics 4, no. 1: 8. https://doi.org/10.3390/dietetics4010008
APA StyleCaballero-García, A., Noriega-González, D. C., Caballero-Castillo, A., & Roche, E. (2025). Proposal for Diet Supplementation to Prevent Knee Osteoarthritis in Female Soccer Players. Dietetics, 4(1), 8. https://doi.org/10.3390/dietetics4010008