The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Results during Additive Administration
2.2. Microbiome Alternation during Additive Administration
3. Materials and Methods
3.1. Description of Evogen Biogas Additive
3.2. Operation of the Two Full-Scale Biogas Plants under Investigation
3.3. Determination of Total Solids
3.4. Determination of Volatile Solids
3.5. Determination of FOS/TAC Ratio
3.6. Determination of Volatile Fatty Acids (VFAs) Profile
3.7. DNA Extraction and 16S rRNA Gene Amplicon Sequencing
3.8. Bioinformatics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lisowyj, M.; Wright, M.M. A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Rev. Chem. Eng. 2020, 36, 401–421. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from anaerobic digestion as an energy vector: Current upgrading development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, S.; Singh, D.; Shekher Giri, B.; Mishra, P.K. Barriers in biogas production from the organic fraction of municipal solid waste: A circular bioeconomy perspective. Bioresour. Technol. 2022, 362, 127671. [Google Scholar] [CrossRef] [PubMed]
- Werkneh, A.A. Biogas impurities: Environmental and health implications, removal technologies and future perspectives. Heliyon 2022, 8, e10929. [Google Scholar] [CrossRef] [PubMed]
- Roubík, H.; Mazancová, J.; Banout, J.; Verner, V. Addressing problems at small-scale biogas plants: A case study from central Vietnam. J. Clean. Prod. 2016, 112, 2784–2792. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Sun, Y.; Yu, J.; Zheng, Z.; Li, S.; Cui, Z.; Hao, J.; Li, G. Effects of intermittent mixing mode on solid state anaerobic digestion of agricultural wastes. Chemosphere 2020, 248, 126055. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.P.; Nguyen, L.N.; Wang, Q.; Ngo, H.H.; Liu, Q.; Zhang, X.; Nghiem, L.D. Hydrogen sulphide management in anaerobic digestion: A critical review on input control, process regulation and post-treatment. Bioresour. Technol. 2022, 346, 126634. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. Odour Emissions of Municipal Waste Biogas Plants—Impact of Technological Factors, Air Temperature and Humidity. Appl. Sci. 2020, 10, 1093. [Google Scholar] [CrossRef]
- Hewitt, J.; Holden, M.; Robinson, B.L.; Jewitt, S.; Clifford, M.J. Not quite cooking on gas: Understanding biogas plant failure and abandonment in Northern Tanzania. Renew. Sustain. Energy Rev. 2022, 165, 112600. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Liu, M.; Wei, Y.; Leng, X. Improving biogas production using additives in anaerobic digestion: A review. J. Clean. Prod. 2021, 297, 126666. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Paritosh, K.; Yadav, M.; Chawade, A.; Sahoo, D. Additives as a Support Structure for Specific Biochemical Activity Boosts in Anaerobic Digestion: A Review. Front. Energy Res. 2020, 8, 1–17. [Google Scholar] [CrossRef]
- Dompara, I.; Maragkaki, A.; Papastefanakis, N.; Floraki, C.; Vernardou, D.; Manios, T. Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste. Sustainability 2023, 15, 5698. [Google Scholar] [CrossRef]
- Fugol, M.; Prask, H.; Szlachta, J.; Dyjakon, A.; Pasławska, M.; Szufa, S. Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion. Energies 2023, 16, 1845. [Google Scholar] [CrossRef]
- Barua, S.; Dhar, B.R. Bioresource Technology Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 244, 698–707. [Google Scholar] [CrossRef]
- Rasapoor, M.; Young, B.; Brar, R.; Sarmah, A.; Zhuang, W.Q.; Baroutian, S. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 2019, 261, 116497. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, M.; Bolan, N.S.; Kapley, A.; Kumar, R.; Singh, L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresour. Technol. 2021, 338, 125514. [Google Scholar] [CrossRef]
- Eduok, S.; John, O.; Ita, B.; Inyang, E.; Coulon, F. Enhanced Biogas Production From Anaerobic Co-digestion of Lignocellulosic Biomass and Poultry Feces Using Source Separated Human Urine as Buffering Agent. Front. Environ. Sci. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Tian, W.; Gu, L.; Li, S.; Deng, R.; Zhu, L.; Li, W.; Liu, F. Facilitating Digester Recovery from Acid Inhibition at High Organic Load Rates by Limited Calcium Peroxide Addition. ACS Sustain. Chem. Eng. 2022, 10, 8184–8195. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Sun, Y. Acclimation of Acid-Tolerant Methanogenic Culture for Bioaugmentation: Strategy Comparison and Microbiome Succession. ACS Omega 2020, 5, 6062–6068. [Google Scholar] [CrossRef] [PubMed]
- Leca, E.; Zennaro, B.; Sambusiti, C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol. Adv. 2023, 65, 108129. [Google Scholar] [CrossRef] [PubMed]
- Tale, V.P.; Maki, J.S.; Struble, C.A.; Zitomer, D.H. Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res. 2011, 45, 5249–5256. [Google Scholar] [CrossRef]
- Lovato, G.; Kovalovszki, A.; Alvarado-morales, M.; Domingues, A.; Angelidaki, I. Modelling bioaugmentation: Engineering intervention in anaerobic digestion. Energy 2021, 175, 1080–1087. [Google Scholar] [CrossRef]
- Liang, T.; Elmaadawy, K.; Liu, B.; Hu, J.; Hou, H.; Yang, J. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: Recent updates of pretreatment methods and the potential effect of humic and nutrients substances. Process Saf. Environ. Prot. 2021, 145, 321–339. [Google Scholar] [CrossRef]
- Shanmugam, S.; Sun, C.; Chen, Z.; Wu, Y.R. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresour. Technol. 2019, 279, 149–155. [Google Scholar] [CrossRef]
- Mistry, A.N.; Kachenchart, B.; Pinyakong, O.; Assavalapsakul, W.; Jitpraphai, S.M.; Somwangthanaroj, A.; Luepromchai, E. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting. Bioresour. Technol. 2023, 367, 128237. [Google Scholar] [CrossRef]
- Additive, E.B. Optimising the AD circular economy. Filtr. Sep. 2021, 58, 8–10. [Google Scholar]
- Król, M.; Syguła-Cholewińska, J.; Sawoszczuk, T. Zeolite-Supported Aggregate as Potential Antimicrobial Agents in Gypsum Composites. Materials 2022, 15, 3305. [Google Scholar] [CrossRef]
- Cho, W.I.; Chung, M.S. Bacillus spores: A review of their properties and inactivation processing technologies. Food Sci. Biotechnol. 2020, 29, 1447. [Google Scholar] [CrossRef]
- Danilova, I.; Sharipova, M. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Front. Microbiol. 2020, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Chen, Y.; Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 2021, 135, 110212. [Google Scholar] [CrossRef]
- Yi, J.; Dong, B.; Jin, J.; Dai, X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS ONE 2014, 9, e102548. [Google Scholar]
- Tzun-Wen Shaw, G.; Liu, A.C.; Weng, C.Y.; Chou, C.Y.; Wang, D. Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of HOG waste. PLoS ONE 2017, 12, e0181395. [Google Scholar]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Liu, Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. Water Res. 2019, 160, 249–258. [Google Scholar] [CrossRef]
- Mutungwazi, A.; Ijoma, G.N.; Ogola, H.J.O.; Matambo, T.S. Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production. Microorganisms 2022, 10, 671. [Google Scholar] [CrossRef]
- Wang, N.; Yang, Y.; Xu, K.; Long, X.; Zhang, Y.; Liu, H.; Chen, T.; Li, J. Distinguishing anaerobic digestion from electrochemical anaerobic digestion: Metabolic pathways and the role of the microbial community. Chemosphere 2023, 326, 138492. [Google Scholar] [CrossRef]
- Carr, S.; Buan, N.R. Insights into the biotechnology potential of Methanosarcina. Front. Microbiol. 2022, 13, 4577. [Google Scholar]
- Pyzik, A.; Ciezkowska, M.; Krawczyk, P.S.; Sobczak, A.; Drewniak, L.; Dziembowski, A.; Lipinski, L. Comparative analysis of deep sequenced methanogenic communities: Identification of microorganisms responsible for methane production. Microb. Cell Fact. 2018, 17, 197. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B. Methods for the Examination of Water and Wastewater. Am. Public Health Assoc. Am. Water Work. 2017, 23, 2–66. [Google Scholar]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [PubMed]
Biogas Plant | Sampling Day | pH | FOS (mg (AcOH)/L) | TAC (mg (CaCO3)/L) | FOS/TAC Ratio | TS (%) | VS (%) | N-NH4 (mgN/L) | Biogas (m3) | Methane (%) | H2S (ppm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BG01 (D1) | Day 10 | Before Evogen | 8.3 | 2154 | 8652 | 0.249 | 9.61 | 7.95 | 2243 | 23,861 | 54.40 | 61 |
Day 20 | 8.4 | 2204 | 8442 | 0.261 | 11.37 | 9.38 | 2820 | 24,530 | 53.90 | 70 | ||
Day 30 | 7.9 | 1178 | 4005 | 0.294 | 10.90 | 9.27 | 2371 | 24,633 | 53.40 | 53 | ||
Day 40 | 8.6 | 1276 | 4332 | 0.294 | 10.67 | 9.02 | 2252 | 24,987 | 50.20 | 71 | ||
Day 50 | 8.4 | 2339 | 7715 | 0.303 | 9.71 | 8.07 | 2500 | 25,188 | 51.40 | 53 | ||
Day 60 | During Evogen | 8.1 | 2255 | 10,228 | 0.220 | 9.23 | 7.10 | 2436 | 23,958 | 52.40 | 53 | |
Day 70 | 7.9 | 2321 | 10,592 | 0.219 | 9.36 | 7.37 | 2608 | 24,043 | 53.90 | 55 | ||
Day 80 | 8.1 | 2186 | 8794 | 0.249 | 9.24 | 7.17 | 2543 | 25,187 | 54.00 | 53 | ||
Day 90 | 8.0 | 2562 | 10,595 | 0.242 | 9.30 | 7.41 | 1547 | 24,031 | 53.90 | 51 | ||
Day 100 | 8.2 | 2894 | 16,645 | 0.221 | 10.56 | 8.43 | 3156 | 25,121 | 54.10 | 34 | ||
BG02 (D1) | Day 10 | Before Evogen | 7.9 | 4451 | 14,377 | 0.310 | 9.44 | 7.01 | 3333 | 9377 | 55.04 | 116 |
Day 20 | 8.1 | 3853 | 16,531 | 0.233 | 9.11 | 6.75 | 3044 | 9253 | 53.77 | 145 | ||
Day 30 | 8.1 | 3140 | 15,029 | 0.209 | 9.18 | 6.72 | 3313 | 8965 | 54.08 | 163 | ||
Day 40 | 8.2 | 2412 | 11,591 | 0.208 | 9.83 | 7.10 | 3496 | 8843 | 56.01 | 211 | ||
Day 50 | 8.2 | 2368 | 12,203 | 0.194 | 8.56 | 6.10 | 2861 | 8657 | 53.95 | 138 | ||
Day 60 | During Evogen | 8.1 | 2534 | 11,906 | 0.213 | 8.43 | 6.01 | 2609 | 9455 | 54.09 | 21 | |
Day 70 | 8.2 | 2689 | 14,344 | 0.187 | 8.57 | 6.09 | 2629 | 9987 | 55.04 | 119 | ||
Day 80 | 8.0 | 4001 | 18,387 | 0.218 | 8.24 | 5.86 | 3143 | 10,456 | 56.66 | 98 | ||
Day 90 | 8.0 | 2381 | 13,966 | 0.170 | 7.60 | 4.84 | 2209 | 10,563 | 58.47 | 117 | ||
Day 100 | 7.9 | 2985 | 14,270 | 0.209 | 8.58 | 6.24 | 2656 | 10,898 | 56.70 | 107 |
Biogas Plant | BG01 | BG02 |
---|---|---|
Electrical Power Capacity | 2 MW | 1 MW |
Pre-tank | 1 pre-tank | 1 pre-tank |
Daily Supply | 40–100 tn/d: corn silage 8 tn/d: LD recirculation from storage tank 1–8 tn/d: glycerol 21 tn/d: waste residues 20 tn/d: pomace (olive, fruits) | 8 tn/d: mix corn silage, potatoes, sunflower 7 tn/d: rye silage 3 tn/d: beetroot 30 tn/day: chicken manure (solid) 2 tn/day: liquid digested residue (after separator) 20 tn/d: organic waste (food waste, etc.) 30 tn/d: whey 60 tn/d: cattle manure (liquid) |
Feeding Rate | 2.1 tn/30 min | 160 tn/day |
First Digester (D1) | 4000 m3 | 4250 m3 |
Temperature | 44 °C | 41 °C |
HRT | 50 days | 40 days |
Stirring | Constantly | 45 min/h |
Second Digester (D2) | 2.800 m3 | - |
Temperature | 39.5 °C | - |
HRT | 20 days | - |
Recirculation of Digested Residue | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfetsas, T.; Panou, M.; Chioti, A.G.; Prokopidou, N.; Dalla, I. The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant. Methane 2023, 2, 329-343. https://doi.org/10.3390/methane2030022
Sfetsas T, Panou M, Chioti AG, Prokopidou N, Dalla I. The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant. Methane. 2023; 2(3):329-343. https://doi.org/10.3390/methane2030022
Chicago/Turabian StyleSfetsas, Themistoklis, Manthos Panou, Afroditi G. Chioti, Nikoleta Prokopidou, and Ioanna Dalla. 2023. "The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant" Methane 2, no. 3: 329-343. https://doi.org/10.3390/methane2030022
APA StyleSfetsas, T., Panou, M., Chioti, A. G., Prokopidou, N., & Dalla, I. (2023). The Effects of Using Evogen Biogas Additive on the Microbiome and Performance of Full-Scale Biogas Plant. Methane, 2(3), 329-343. https://doi.org/10.3390/methane2030022