Effect of Gliding Arc Plasma Activated Water (GAPAW) on Maize (Zea mays L.) Seed Germination and Growth
Abstract
:1. Introduction
2. Material and Experimental Methods
2.1. Location of the Study Site
2.2. Glidarc Plasma Device and Treatment Procedure
2.3. Physicochemical Analysis
2.4. Evaluation the Effect of Plasma on Water Absorption and Seed Germination
2.5. Pathway Scanning Electron Microscopy (SEM) Analysis
2.6. Effects of Plasma on Maize Growth Variables and Chlorophyll Content
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Plasma Activated Water
3.2. Effect of Plasma on Water Absorption, Maize Seed Color and Seed Germination
3.2.1. Water Absorption
3.2.2. Maize Seed Color
3.2.3. Seed Germination
3.3. Pathway Scanning Electron Microscopy
3.4. Effect of Plasma on Maize Growth Variables and Chlorophyll Content
3.4.1. Stem Length
3.4.2. Leaf Width and Collar Diameter
3.4.3. Chlorophyll Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shabir, A.M.; Manzoor, A.S.; Mohammad, M.M. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2016, 9, 734–750. [Google Scholar] [CrossRef]
- Czernichowski, A. Gliding arc: Applications to engineering and environment control. Pure Appl. Chem. 1994, 66, 1301–1310. [Google Scholar] [CrossRef]
- Lesueur, H.; Czernichowski, A.; Chapelle, J. Electrically assisted partial oxidation of methane. Int. J. Hydrog. Energy 1994, 19, 139–144. [Google Scholar] [CrossRef]
- Brisset, J.L. Décharges Electriques Glissantes à la Pression Atmosphérique et Leurs Applications à L’environnement; Union des Professeurs de Physique et de Chimie: Paris, France, 2009; p. 103. [Google Scholar]
- Fridman, A.A.; Petrousov, A.; Chapelle, J.; Cormier, J.M.; Czernichowski, A.; Lesueur, H.; Stevefelt, J. Modèle physique de l’arc glissant. J. Phys. III 1994, 4, 1449–1465. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Prados, M.; Paillard, H.; Roche, P. Hydroxyl Radical Oxidation Processes for the Removal of Triazine from Natural Water. Ozone Sci. Eng. 1995, 17, 183–194. [Google Scholar] [CrossRef]
- Clements, J.S.; Sato, M.; Davis, R.H. Preliminary investigation of pre-breakdown phenomena and chemical reactions using a pulsed high voltage discharge in water. IEEE Trans. Ind. Appl. 1985, 23, 1372–1379. [Google Scholar]
- Burlica, R.; Kirkpatrick, M.J.; Locke, B.R. Formation of reactive species in gliding arc discharges with liquid water. J. Electrost. 2006, 64, 35–43. [Google Scholar] [CrossRef]
- Moreau, M.; Feuilloley, M.G.J.; Veron, W.; Meylheuc, T.; Chevalier, S.; Brisset, J.L.; Orange, N. Gliding arc discharge in the potato pathogen Erwinia carotovora subsp. atroseptica: Mechanism of lethal action and effect on membrane-associated molecules. Appl. Environ. Microbiol. 2007, 73, 5904–5910. [Google Scholar]
- Kamgang-Youbi, J.; Herry, M.; Bellon-Fontaine, M.; Brisset, J.; Doubla, A.; Naiïtali, M. Evidence of temporal post discharge decontamination of bacteria by gliding electric discharges: Application to Hafniaalvei. Appl. Environ. Microbiol. 2007, 73, 4791–4796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamgang, J.O.; Briandet, R.; Herry, J.M.; Brisset, J.L.; Naïtali, M. Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air. J. Appl. Microbiol. 2007, 103, 621–628. [Google Scholar] [CrossRef]
- Dasan, B.G.; Onal-Ulusoy, B.; Pawlat, J.; Diatczyk, J.; Sen, Y.; Mutlu, M. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess Technol. 2016, 10, 650–661. [Google Scholar] [CrossRef]
- INS. Quatrième Enquête Camerounaise Auprès des Ménages-Présentation des Bases de Données. Institut National de la Sta-tistique, Yaoundé (Cameroun). [Cameroon Fourth Household Survey. National Institute of Statistic]. 2014. Available online: http://www.statistics-cameroon.org/ins/publications.htm (accessed on 10 September 2022).
- Sonchieu, J. Selling pesticides in Ngaoundere, Cameroon. Crop Prot. 2006, 48, 180–181. [Google Scholar]
- Shaaya, E.; Kostjukovski, M.; Eilberg, J.; Sukprakarn, C. Plant oils as fumigants and contact pesticides for the control of stored-product insects. J. Stored Prod. Res. 1997, 33, 7–15. [Google Scholar] [CrossRef]
- Randeniya, L.K.; de-Groot, G.J.J.B. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Chem. Plasma Process. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.D. The effects of non-thermal plasma treatment on wheat germination. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Ling, L.; Jiangang, L.; Minchong, S.; Chunlei, Z.; Yuanhua, D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci. Rep. 2015, 5, 13033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sera, B.; Sery, M.; Gavril, B. Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem. Plasma Process. 2017, 37, 207–221. [Google Scholar] [CrossRef]
- Šerá, B.; Vanková, R.; Roháček, K.; Šerý, M. Gliding Arc Plasma Treatment of Maize (Zea mays L.) Grains Promotes Seed Germination and Early Growth, Affecting Hormone Pools, but Not Significantly Photosynthetic Parameters. Agronomy 2021, 11, 2066. [Google Scholar] [CrossRef]
- Kolbert, Z.; Feigl, G.; Freschi, L.; Poór, P. Gasotransmitters inaction: Nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 2019, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Alamri, S.; Al-Amri, A.A.; Alsubaie, Q.D.; Al-Munqedi, B.; Ali, H.M.; Siddiqui, M.H. Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. J. Plant Growth Regul. 2021, 40, 2358–2370. [Google Scholar] [CrossRef]
- Brisset, J.-L.; Moussa, D.; Doubla, A.; Hnatiuc, E.; Hnatiuc, B.; Youbi, G.K.; Herry, J.-M.; Naïtali, M.; Bellon-Fontaine, M.-N. Chemical Reactivity of Discharges and Temporal Post-Discharges in Plasma Treatment of Aqueous Media: Examples of Gliding Discharge Treated Solutions. Ind. Eng. Chem. Res. 2008, 47, 5761–5781. [Google Scholar] [CrossRef]
- Hoang, L.V. Comparaison des Rendements Synergétiques de Dégradation de Trois Composés Organiques par Plusieurs Pro-cédés D’oxydations Avancées en Milieu Aqueux. PhD Thesis, Poitiers University, Poitiers, France, 2009; p. 57. [Google Scholar]
- Molina, R.; López-Santos, C.; Gómez-Ramírez, A.; Vílchez, A.; Espinós, J.P.; González-Elipe, A.R. Influence of irrigation conditions in the germination of plasma treated Nasturtium seeds. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). Seed Sci. Tech. 2001, 29, 1–127. Available online: https://www.seedtest.org/en/publications/international-rules-seed-testing-1168.html (accessed on 10 September 2022).
- Sarinont, T.; Amano, T.; Koga, K. Effects of atmospheric air plasma irradiation to seeds of radish sprouts on chlorophyll and carotenoids concentrations in their leaves. MRS Online Proc. Libr. 2014, 1723, 34–38. [Google Scholar] [CrossRef]
- Benstaali, B.; Moussa, D.; Addou, A.; Brisset, J.-L. Plasma treatment of aqueous solutes: Some chemical properties of a glid-ing arc in humid air. Eur. Phys. J. Appl. Phys. 1998, 4, 171–179. [Google Scholar] [CrossRef]
- Buxton, G.V. Radiation chemistry of the liquid state (1) water and homogeneous aqueous solutions. In Radiation Chemistry, Principles and Applications; Farhataziz, A., Rodgers, M.A.J., Eds.; VCH: Weinheim, Germany, 1987; pp. 321–376. [Google Scholar]
- Hickling, A. Electrochemical processes in glow discharge at the gas–solution interface. In Modern Aspects of Electrochemistry; O’Bockris, J.M., Conway, B.E., Eds.; Plenum Press: New York, NY, USA, 1971; pp. 329–373. [Google Scholar]
- Dolan, T. Electron and ion collisions with water-vapor. J. Phys. 1993, 26, 4–8. [Google Scholar]
- Brisset, J.L.; Hnatiuc, E. Peroxynitrite are-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem. Plasma Process. 2012, 32, 655–674. [Google Scholar] [CrossRef]
- Kornyshev, A.A.; Kuznetsov, A.M.; Spohr, E.; Ulstrup, J. Kinetics of Proton Transport in Water. J. Phys. Chem. B 2003, 107, 3351–3366. [Google Scholar] [CrossRef] [Green Version]
- Brisset, J.L.; Benstaali, B.; Moussa, D.; Fanmoe, J.; Njoyim-Tamungang, E. Acidity control of plasma chemical oxidation: Application to dye removal, urban wastes abatement and microbial inactivation. Plasma Source Sci. Technol. 2011, 20, 034021. [Google Scholar] [CrossRef]
- Kamgang, G. Propriétés Réactives en Post-Décharge Temporelle des Décharges Electriques Glissantes dans l’air Humide: Ap-plication à la Dégradation de Colorant Azoïque et à la Décontamination Microbienne. [Reactive Properties in Temporal after Discharge of Sliding Electric Discharges in Humid Area: Application to azo dye Degradation and Microbial Decontamination]. Ph.D. Thesis, Université de Rouen et de Yaoundé I, Rouen, France, 2008. [Google Scholar]
- Tamo, B.S.; Kamgang-Youbi, G.; Acayanka, E.; Simo, L.M.; Tiya-Djowe, A.; Kuete-Saa, D.; Laminsi, S.; Tchadje, L. Plasma chemical functionalization of a Cameroonian kaolinite clay for a greater hydrophilicity. Plasma Chem. Plasma Process. 2016, 36, 1449–1469. [Google Scholar] [CrossRef]
- Kamgang, J.O.; Naitali, M.; Herry, J.M.; Bellon-Fontaine, M.N.; Brisset, J.L.; Briandet, R. Increase in the hydrophilicity and Lewis acid base properties of solid surfaces achieved by electric gliding discharge in humid air: Effects on bacterial ad-herence. Plasma Sci. Technol. 2009, 11, 187. [Google Scholar] [CrossRef]
- Velichko, I.; Gordeev, I.; Shelemin, A.; Nikitin, D.; Brinar, J.; Pleskunov, P.; Choukourov, A.; Pazderů, K.; Pulkrábek, J. Plasma Jet and Dielectric Barrier Discharge Treatment of Wheat Seeds. Plasma Chem. Plasma Process 2019, 39, 913–928. [Google Scholar] [CrossRef]
- Faubert, F.; Wartel, M.; Pellerin, N.; Cochet, V.; Regnier, E.; Hnatiuc, B. Treatment by gliding arc of epoxy resin: Prelimi-nary analysis of surface modifications. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII; SPIE: Bellingham, WA, USA, 2016; Volume 10010, pp. 884–894. [Google Scholar] [CrossRef]
- Varoquaux, P.; Wiley, R.C. Biological and biochemical changes in minimally processed refrigerated fruits and vegeta-bles. In Minimally Processed Refrigerated Fruits & Vegetables; Springer: Boston, MA, USA, 1994; pp. 226–268. [Google Scholar]
- Rocculi, P.; Romani, S.; Dalla Rosa, M. Effect of MAP with argon and nitrous oxide on quality maintenance of minimally processed kiwifruit. Postharvest Biol. Technol. 2005, 35, 319–328. [Google Scholar] [CrossRef]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Sera, B.; Baniulis, D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants 2022, 11, 856. [Google Scholar] [CrossRef]
- Henselová, M.; Slováková, L.; Martinka, M.; Zahoranová, A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 2012, 67, 490–497. [Google Scholar] [CrossRef]
- Kamseu Mogo, J.-P.; Kamgang Youbi, G.; Djepang, S.A.; Tamo, B.S.; Laminsi, S. Treatment of Maize Seeds (Zea mays L.) by Nonthermal Plasma Generated by Gliding Electric Discharge for Application in Agriculture. IEEE Trans. Plasma Sci. 2021, 49, 2318–2328. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, Y.K.; Chang, H.C. Evaluation of physicochemical properties of plasma treated brown rice. Food Chem. 2012, 135, 74–79. [Google Scholar] [CrossRef]
- Zahoranová, A.; Hoppanová, L.; Šimončicová, J.; Tučeková, Z.; Medvecká, V.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Černák, M. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and surface mi-croorganisms inactivation. Plasma Chem. Plasma Process 2018, 38, 969–988. [Google Scholar] [CrossRef]
- Šerá, B.; Špatenka, P.; Šerý, M.; Vrchotová, N.; Hrušková, I. Influence of plasma treatment on wheat and oat germination and earlygrowth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Starič, P.; GrobelnikMlakar, S.; Junkar, I. Response of Two Different Wheat Varieties to Glow and Afterglow Oxygen Plasma. Plants 2021, 10, 1728. [Google Scholar] [CrossRef]
- Ndiffo-Yemeli, G.B.; Švubová, R.; Kostolani, D.; Kyzek, S.; Machala, Z. The effect of water activated by non-thermal air plasma on the growth of farm plants: Case of maize and barley. Plasma Process. Polym. 2020, 18, 2000205. [Google Scholar] [CrossRef]
- Thapanut, S.; Ryu, K.; Yosuke, W.; Kazunori, K.; Masaharu, S. Plant growth enhancement of seeds immersed in plasma activated water. Mater. Res. Soc. 2017, 2, 995–1000. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, L.; Hensel, K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process Polym. 2019, 16, 1800131. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Marques, N.C.; Semedo, J.N.; Matos, M.C.; Quartin, V.L. Photosynthetic performance and pigment com-position of leaves from two tropical species is determined by light quality. Plant Biol. 2002, 4, 112–120. [Google Scholar] [CrossRef]
- Danilejko, Y.K.; Belov, S.V.; Egorov, A.B.; Lukanin, V.I.; Sidorov, V.A.; Apasheva, L.M.; Gudkov, S.V. Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge. Plants 2021, 10, 2161. [Google Scholar] [CrossRef]
Treatments | pH | Conductivity (µs·cm−1) | TDS (mg/L) | [NO3−] (mmol/L) | [H2O2] (mmol/L) |
---|---|---|---|---|---|
Control | 6.4 | 70 | 30 | 0.002 | 0 |
5 min | 3.4 | 190 | 90 | 0.156 | 0.01 |
15 min | 3.3 | 230 | 110 | 0.176 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogo, J.P.K.; Fovo, J.D.; Sop-Tamo, B.; Mafouasson, H.N.A.; Ngwem, M.C.N.; Tebu, M.J.; Youbi, G.K.; Laminsi, S. Effect of Gliding Arc Plasma Activated Water (GAPAW) on Maize (Zea mays L.) Seed Germination and Growth. Seeds 2022, 1, 230-243. https://doi.org/10.3390/seeds1040020
Mogo JPK, Fovo JD, Sop-Tamo B, Mafouasson HNA, Ngwem MCN, Tebu MJ, Youbi GK, Laminsi S. Effect of Gliding Arc Plasma Activated Water (GAPAW) on Maize (Zea mays L.) Seed Germination and Growth. Seeds. 2022; 1(4):230-243. https://doi.org/10.3390/seeds1040020
Chicago/Turabian StyleMogo, Jean Paul Kamseu, Joseph Djeugap Fovo, Berthelot Sop-Tamo, Hortense Nöelle Apala Mafouasson, Marcelline Carine Ngo Ngwem, Marie Jeanne Tebu, Georges Kamgang Youbi, and Samuel Laminsi. 2022. "Effect of Gliding Arc Plasma Activated Water (GAPAW) on Maize (Zea mays L.) Seed Germination and Growth" Seeds 1, no. 4: 230-243. https://doi.org/10.3390/seeds1040020
APA StyleMogo, J. P. K., Fovo, J. D., Sop-Tamo, B., Mafouasson, H. N. A., Ngwem, M. C. N., Tebu, M. J., Youbi, G. K., & Laminsi, S. (2022). Effect of Gliding Arc Plasma Activated Water (GAPAW) on Maize (Zea mays L.) Seed Germination and Growth. Seeds, 1(4), 230-243. https://doi.org/10.3390/seeds1040020