Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Oil Content
2.3. Tocopherol Determination
2.4. Analysis of Phytosterol Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Oil Content Variation
3.2. Phytosterol Variation
3.3. Tocopherol Variation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Gómez, P.; Sánchez-Pérez, R.; Paredes, T.; Dicenta, F. Varietal traceability in almond products by SSR (Simple Sequence Repeat) markers. Acta Hortic. 2014, 1028, 255–258. [Google Scholar] [CrossRef]
- Schirra, M. Postharvest technology and utilization of almonds. Hortic. Rev. 1997, 20, 267–292. [Google Scholar]
- Berger, P. Aptitude à la transformation industrielle de quelques variétés d’amandier. Bull. Tech. Infor. 1969, 241, 577–580. [Google Scholar]
- Socias i Company, R.; Kodad, O.; Alonso, J.M.; Gradziel, T.M. Almond quality: A breeding perspective. Hortic. Rev. 2008, 34, 197–238. [Google Scholar]
- Kodad, O. Chemical composition of almond nuts. In Almonds: Botany, Production and Uses; Sociasi Company, R., Gradizel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 428–449. [Google Scholar]
- Socias i Company, R.; Kodad, O.; Alonso, J.M.; Font-Forcada, C. Fruit quality in almond: Chemical aspects for breeding strategies. Options Méditerranéennes 2010, 94, 235–243. [Google Scholar]
- Romero, A.; Tous, J.; Plana, J.; Guardia, M.D.; Díaz, I. How cultivar choice affects Spanish consumer’s acceptance of marzipan. Acta Hortic. 2002, 591, 117–124. [Google Scholar] [CrossRef]
- Kamil, A.; Chen, C.Y.O. Health benefits of almonds beyond cholesterol reduction. J. Agric. Food Chem. 2012, 60, 6694–6702. [Google Scholar] [CrossRef]
- Felipe, A.J. El Almendro: El Material Vegetal; Integrum: Lérida, Spain, 2000. [Google Scholar]
- Grasselly, C.; Crossa-Raynaud, P. L’Amandier; G.P. Maisonneuve et Larose: Paris, France, 1980. [Google Scholar]
- Gylling, H.; Siimes, M.A.; Miettinen, T.A. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J. Lipid Res. 1995, 36, 1807–1812. [Google Scholar] [CrossRef]
- Ntanios, F.Y.; van de Kooij, A.J.; de Deckere, E.A.M.; Duchateau, G.S.M.J.E.; Trautwein, E.A. Effects of various amounts of dietary plant sterol esters on plasma and hepatic sterol concentration and aortic foam cell formation of cholesterol-fed hamsters. Artherosclerosis 2003, 169, 41–50. [Google Scholar] [CrossRef]
- Awad, A.B.; Fink, C.S. Phytosterols as anticancer dietary components: Evidence and mechanism of action. J. Nutr. 2000, 130, 2127–2130. [Google Scholar] [CrossRef] [Green Version]
- Reische, D.W.; Lillard, D.A.; Eitenmiller, R.R. Antioxidants. In Food Lipids. Chemistry, Nutrition and Biotechnology; Akoh, C.C., Min, D.B., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 423–448. [Google Scholar]
- Kamal-Eldin, A.; Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cuesta, A.; Kodad, O.; Socias i Company, R.; Velasco, L. Phytosterolvariability in almondgermplasm. J. Am. Soc. Hort. Sci. 2012, 137, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Yada, S.; Huang, G.; Lapsley, K. Natural variability in the nutrient composition of California-grown almonds. J. Food Comp. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef] [Green Version]
- López-Ortiz, C.; Prats-Moya, M.; Sanahuja, S.; Maestre-Pérez, A.B.; Grané-Teruel, N.; Martín-Carratalá, M.L. Comparative study of tocopherol homologue content in four almond oil cultivars during two consecutive years. J. Agric. Food Chem. 2008, 21, 144–151. [Google Scholar] [CrossRef]
- Kodad, O.; Alonso, J.M.; Espiau, M.; Estopañán, G.; Juan, T.; Socias i Company, R. Chemometric characterization of almond germplasm: Compositional aspects involved in quality and breeding. J. Am. Soc. Hortic. Sci. 2011, 136, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Maestri, D.; Martínez, M.; Bodoira, R.; Rossi, Y.; Oviedo, A.; Pierantozzi, P.; Torres, M. Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina. Food Chem. 2015, 170, 55–61. [Google Scholar] [CrossRef]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef]
- Kodad, O.; Socias i Company, R. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relation with kernel quality. J. Agric. Food Chem. 2008, 56, 4096–4101. [Google Scholar] [CrossRef]
- Fernández-Cuesta, A.; Aguirre-González, M.R.; Ruiz-Méndez, M.V.; Velasco, L. Validation of a method for the analysis of phytosterols in sunflower seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 325–331. [Google Scholar] [CrossRef]
- Abdallah, A.; Ahumada, M.H.; Gradziel, T.M. Oil content and fatty acid composition of almond kernels from different genotypes and California production regions. J. Am. Soc. Hortic. Sci. 1998, 123, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Kodad, O.; Estopañán, G.; Juan, T.; Molino, M.; Mamouni, A.; Messaoudi, Z.; Lahlou, M.; Socias i Company, R. Plasticity and stability in the major fatty acid content of almond kernels grown under two Mediterranean climates. J. Hortic. Sci. Biotecnol. 2010, 85, 381–386. [Google Scholar] [CrossRef]
- Sathe, S.K.; Seram, N.P.; Kshirsagar, H.H.; Heber, D.; Lapsley, K.A. Fatty acid composition of California grown almonds. J. Food Sci. 2008, 73, C607–C614. [Google Scholar] [CrossRef] [PubMed]
- Schirra, M.; Agabbio, M. Influence of irrigation on keeping quality of almond kernels. J. Food Sci. 1989, 54, 1642–1645. [Google Scholar] [CrossRef]
- Nanos, G.D.; Kazantzis, I.; Kefalas, P.; Petrakis, C.; Stavroulakis, G.G. Irrigation and harvest time affect almond kernel quality and composition. Sci. Hortic. 2002, 96, 249–254. [Google Scholar] [CrossRef]
- Egea, G.; Gonzalez-Real, M.M.; Baille, A.; Nortes, P.A.; Sanchez-Bel, P.; Domingo, R. The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agric. Water Manag. 2009, 96, 1605–1614. [Google Scholar]
- Määttä, K.; Lampi, A.M.; Petterson, J.; Fogelfors, B.M.; Piironen, V.; Kamal-Eldin, A. Phytosterol content in seven oat cultivars grown at three locations in Sweden. J. Sci. Food Agric. 1999, 79, 1021–1207. [Google Scholar] [CrossRef]
- Fernández-Cuesta, A.; Nabloussi, A.; Fernández-Martínez, J.M.; Velasco, L. Tocopherols and phytosterols in sunflower seeds for the human food market. Grasas Aceites 2012, 63, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Velasco, L.; Fernández-Martínez, J.M.; García-Ruiz, R.; Domínguez, J. Genetic and environmental variation for tocopherol content and composition in sunflower commercial hybrids. J. Agric. Sci. 2002, 139, 425–429. [Google Scholar] [CrossRef]
- Yang, B.; Koponen, J.; Tahvonen, R.; Kallio, H. Plant sterols in seeds of two species of Vaccinium (V. myrtillus & V. vitis-idaea) naturally distributed in Finland. Eur. Food Res. Technol. 2003, 216, 34–38. [Google Scholar]
- Navas-López, J.F.; Cano, J.; de la Rosa, R.; Velasco, L.; León, L. Genotype by environment interaction for oil quality components in olive tree. Eur. J. Agron. 2020, 119, 126115. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Contreras, C.; Stanzione, V.; Tivani, M.; Mastio, V.; Gentili, L.; Searles, P.; Brizuela, M.; Fernández, F.; et al. Thermal regime and cultivar effects on squalene and sterol contents in olive fruits: Results from a field network in different Argentinian environments. Sci. Hortic. 2022, 303, 111230. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Velasco, L.; Socias i Company, R.; Fernandez i Marti, A. Association mapping for kernel phytosterol content in almond. Front. Plant Sci. 2015, 6, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamany, A.J.; Samadi, G.R.; Kim, D.H.; Keum, Y.S.; Saini, R.K. Comparative study of tocopherol contents and fatty acids composition in twenty almond cultivars of Afghanistan. J. Am. Oil Chem. Soc. 2017, 6, 805–817. [Google Scholar] [CrossRef]
- Baydar, H.; Erbaf, S. Influence of seed development and seed position on oil, fatty acids and total tocopherol contents in sunflower (Helianthus annuus L.). Turk. J. Agric. For. 2005, 29, 179–186. [Google Scholar]
- Ayerdi-Gotor, A.; Berger, M.; Labalette, F.; Centis, S.; Daydé, J.; Calmon, A. Variabilité des teneurs et compositions des composésmineurs dans l’huile de tournesol au cours du développement du capitule. Partie I—Tocophérols. OCL 2006, 13, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Britz, S.J.; Kremer, D.F.; Kenworthy, W.J. Tocopherols in soybean seeds: Genetic variation and environmental effects in field-grown crops. J. Am. Oil Chem. Soc. 2008, 85, 931–936. [Google Scholar] [CrossRef]
- Kodad, O.; Socias i Company, R.; Prats, M.S.; López-Ortiz, M.C. Variability in tocopherol concentrations in almond oil and its use as a selection criterion in almond breeding. J. Hortic. Sci. Biotecnol. 2006, 81, 501–507. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Kodad, O.; Juan, T.; Estopañán, G.; Socias i Company, R. Genetic variability and pollen effect on the transmission of the chemical components of the almond kernel. Span. J. Agric. Res. 2011, 9, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Font i Forcada, C.; Fernandez i Marti, A.; Socias i Company, R. Mapping quantitative trait loci for kernel composition in almond. BMC Genet. 2012, 13, 47. [Google Scholar] [CrossRef]
Source of Variation | |||
---|---|---|---|
Component | Genotype (G) | Location (L) | G × L |
Oil content (% DM) | 1.31 ns z | 14.80 ** | 21.35 ** |
Oil phytosterol content (g kg−1 oil) | 0.03 ns | 0.4 ** | 0.04 * |
Kernel phytosterol content (g kg−1 kernel) | 0.02 ** | 0.08 ** | 0.05 ** |
β-sitosterol (% phytosterols) | 0.67 ns | 7.26 ** | 16.16 ** |
Δ5-Avenasterol (% phytosterols) | 2.11 ** | 2.99 ** | 3.44 |
Campesterol (% phytosterols) | 0.21 ns | 0.07 ns | 0.11 ns |
Δ5,24-Stigmastadienol (% phytosterols) | 0.09 ns | 0.18 ns | 0.31 ns |
Δ7-Stigmastenol (% phytosterols) | 0.28 ns | 0.41 * | 0.08 ns |
Δ7-Campesterol (% phytosterols) | 0.39 * | 0.56 * | 0.93 ** |
Stigmasterol (% phytosterols) | 1.01 ** | 0.003 ns | 0.13 * |
Clerosterol (% phytosterols) | 0.05 ns | 0.02 ns | 0.003 ns |
Δ7-Avenasterol (% phytosterols) | 0.56 ns | 0.86 * | 0.27 ns |
δ-tocopherol (mg kg−1 oil) | 0.84 ** | 0.36 ns | 0.015 ** |
γ-tocopherol (mg kg−1 oil) | 165.81 * | 77.55 ** | 235.94 ** |
α-tocopherol (mg kg−1 oil) | 6332.19 * | 15106.02 ** | 7696.27 ** |
Genotype | Ferragnès | Fournat de Bréznaud | Marcona | ||||||
---|---|---|---|---|---|---|---|---|---|
Component | Meknès | Zaragoza | Mean | Meknès | Zaragoza | Mean | Meknès | Zaragoza | Mean |
Oil content (% DM) | z 56.18 ± 0.3 b | 62.86 ± 0.03 a | ‡ 59.52 ± 4.5 A | 57.3 ± 0.49 b | 59.87 ± 1.7 a | 58.6 ± 2.39 A | 60.92 ± 1.2 a | 58.37 ± 1.3 b | 59.65 ± 1.91 A |
Oil phytosterol content (g kg−1 oil) | 2.45 ± 0.04 a | 2.33 ± 0.16 b | 2.39 ± 0.32 A | 2.51 ± 0.1 a | 2 ± 0.18 b | 2.25 ± 0.25 A | 2.66 ± 0.49 a | 2.18 ± 0.22 b | 2.42 ± 0.43 A |
Kernel phytosterol content (g kg−1 kernel) | 1.37 ± 0.01 b | 1.46 ± 0.09 a | 1.42 ± 0.08 A | 1.44 ± 0.07 a | 1.19 ± 0.06 b | 1.31 ± 0.19 B | 1.62 ± 0.22 a | 1.27 ± 0.68 b | 1.44 ± 0.18 A |
Campesterol (% total phytosterols) | 2.35 ± 0.36 a | 2.62 ± 0.25 a | 2.48 ± 0.26 A | 2.71 ± 0.14 a | 3.14 ± 0.27 a | 2.93 ± 0.38 A | 2.75 ± 0.04 a | 2.54 ± 88.6 a | 2.64 ± 0.11 A |
Stigmasterol (% total phytosterols) | 0.24 ± 0.38 a | 0.28 ± 0.16 a | 0.26 ± 0.32 B | 1.37 ± 0.01 a | 0.97 ± 0.78 b | 1.17 ± 0.68 A | 0.18 ± 0.04 b | 0.50 ± 0.14 a | 0.34 ± 0.17 B |
Δ7-Campesterol (% total phytosterols) | 0.80 ± 0.66 a | 0.94± 0.46 a | 0.87 ± 0.47 A | 0.48 ± 0.01 a | 0.12 ± 0.22 a | 0.30 ± 0.29 B | 0.06 ± 0.73 b | 1.57 ± 0.25 a | 0.81 ± 0.52 A |
Clerosterol (% total phytosterols) | 1.04 ± 0.03 a | 1.12 ± 0.23 a | 1.08 ± 0.18 A | 0.84 ± 0.01 a | 0.87± 0.08 a | 0.85 ± 0.1 A | 0.92 ± 0.36 a | 1.07± 0.37 a | 0.99 ± 0.28 A |
β-sitosterol (% total phytosterols) | 77.6 ± 0.7 b | 83.85 ± 0.42 a | 80.75 ± 1.3 A | 81.59 ± 0.6 a | 80.66 ± 0.01 b | 81.13 ± 0.5 A | 81.87 ± 1.16 a | 81.27 ± 0.24 a | 81.57 ± 2.06 A |
Δ5-Avenasterol (% total phytosterols) | 8.45 ± 0.11 b | 10.23 ± 0.4 a | 9.34 ± 1.06 C | 8.84 ± 0.02 b | 11.18 ± 1.5 a | 10.01 ± 1.24 B | 11.35 ± 0.62 a | 10.23 ± 0.46 b | 10.79 ± 0.9 A |
Δ5.24-Stigmastadienol (% total phytosterols) | 1.97 ± 0.05 a | 1.13± 0.09 b | 1.55 ± 0.06 A | 1.34 ± 0.01 a | 1.16 ± 0.18 a | 1.25 ± 0.14 A | 1.28 ± 0.23 b | 1.56 ± 0.86 b | 1.42 ± 0.7 A |
Δ7-Stigmastenol (% total phytosterols) | 1.32 ± 0.18 a | 0.61 ± 0.04 b | 0.96 ± 0.16 A | 0.60 ± 0.06 a | 0.33 ± 0.13 b | 0.46 ± 0.22 B | 0.63 ± 0.16 a | 0.49 ± 0.59 b | 0.56 ± 0.37 AB |
Δ7-Avenasterol (% total phytosterols) | 2.39 ± 0.46 a | 1.32 ± 0.1 b | 1.85 ± 0.34 A | 1.49 ± 0.05 a | 0.99 ± 0.25 b | 1.24 ± 0.35 A | 1.19 ± 1.2 a | 1.16 ± 0.62 a | 1.18 ± 0.82 A |
δ-tocopherol (mg kg−1 oil) | 0.22 ± 0.06 b | 0.62 ± 0.09 a | 0.42 ± 0.27 B | 0.66 ± 0.02 a | 0.20 ± 0.2 b | 0.43 ± 0.43 B | 1.39 ± 0.09 a | 0.21 ± 0.20 b | 0.79 ± 0.06 A |
γ-tocopherol (mg kg−1 oil) | 4.93 ± 0.3 b | 21.43 ± 4.1 a | 13.18 ± 4.88 A | 8.10 ± 0.11 a | 4.93 ± 0.32 b | 6.51 ± 10.59 B | 4.23 ± 0.09 b | 11.58 ± 0.09 a | 7.90 ± 0.54 AB |
α-tocopherol (mg kg−1 oil) | 505.5 ± 11.9 a | 468.1 ± 23.02 b | 486.8 ± 39.9 A | 428.8 ± 60.5 b | 462.8 ± 1.6 b | 445.8 ± 57.2 B | 555.16 ± 17.5 a | 372.73 ± 5.8 b | 463.9 ± 96.6 B |
Component | Location | |
---|---|---|
Meknes z | Zaragoza | |
Oil content (% DM) | 58.14 ± 2.85 b | 60.36 ± 1.90 a |
Oil phytosterol content (g kg−1 oil) | 2.54 ± 0.19 a | 2.17 ± 0.24 b |
Kernel phytosterol content (g kg−1 kernel) | 1.48 ± 0.11 a | 131 ± 0.19 b |
Campesterol (% total phytosterols) | 2.60 ± 0.42 a | 2.76 ± 0.27 a |
Stigmasterol (% total phytosterols) | 0.59 ± 0.46 a | 0.58 ± 0.52 a |
Δ7-Campesterol (% total phytosterols) | 0.44 ± 0.51 b | 0.88 ± 0.43 a |
Clerosterol (% total phytosterols) | 0.93 ± 0.15 a | 1.02 ± 0.22 a |
β-sitosterol (% total phytosterols) | 80.37 ± 1.50 b | 81.93 ± 2.15 b |
Δ5-Avenasterol (% total phytosterols) | 9.55 ± 1.43 b | 10.55 ± 0.85 a |
Δ7-Avenasterol (% total phytosterols) | 1.53 ± 0.62 a | 1.28 ± 0.14 a |
Δ7-Stigmastenol (% total phytosterols) | 0.85 ± 0.45 a | 0.47 ± 0.28 b |
Δ5.24-Stigmastadienol (% total phytosterols) | 1.69 ± 0.24 a | 1.15 ± 0.70 a |
δ-tocopherol (mg kg−1 oil) | 0.76 ± 0.65 a | 0.34 ± 0.27 a |
γ-tocopherol (mg kg−1 oil) | 5.75 ± 9.85 b | 12.64 ± 1.95 a |
α-tocopherol (mg kg−1 oil) | 496.48 ± 90.46 a | 434.50 ± 36.43 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodad, O.; Fernandez-Cuesta, A.; Velasco, L.; Estopañán, G.; El Baji, M.; Martínez-García, P.J.; Martínez-Gómez, P.; i Company, R.S. Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil. Seeds 2022, 1, 260-270. https://doi.org/10.3390/seeds1040022
Kodad O, Fernandez-Cuesta A, Velasco L, Estopañán G, El Baji M, Martínez-García PJ, Martínez-Gómez P, i Company RS. Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil. Seeds. 2022; 1(4):260-270. https://doi.org/10.3390/seeds1040022
Chicago/Turabian StyleKodad, Ossama, Alvaro Fernandez-Cuesta, Leonardo Velasco, Gloria Estopañán, Mina El Baji, Pedro José Martínez-García, Pedro Martínez-Gómez, and Rafel Socias i Company. 2022. "Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil" Seeds 1, no. 4: 260-270. https://doi.org/10.3390/seeds1040022
APA StyleKodad, O., Fernandez-Cuesta, A., Velasco, L., Estopañán, G., El Baji, M., Martínez-García, P. J., Martínez-Gómez, P., & i Company, R. S. (2022). Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil. Seeds, 1(4), 260-270. https://doi.org/10.3390/seeds1040022