Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Water Absorption Experiment and Electrical Conductivity Measurement
2.3. Seed Germination Experiment
2.4. Emergence Experiment
2.5. Phenotyping Analyses
2.6. Data Analysis
2.7. Statistical Analysis
2.7.1. Water Absorption
2.7.2. Germinability/Emergence/Phenotyping
3. Results
3.1. Water Absorption and Electrical Conductivity
3.2. Seed Germination
3.3. Emergence
3.4. Phenotypic Traits
4. Discussion
4.1. Water Absorption and Electrical Conductivity
4.2. Seed Germination and Emergence
4.3. Phenotypic Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. Working group (Organisation for Economic Co-operation and Development) Chapter 4. In Safety Assessment of Transgenic Organisms in the Environment; OECD Publishing: Paris, France, 2016; Volume 6, pp. 187–210. ISBN 978-92-64-25342-1. [Google Scholar]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)-model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.R.; Santiago, A.S.; Araújo, A.P.; Teixeira, M.G. Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Braz. J. Plant Physiol. 2005, 17, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Čupić, T.; Gantner, R.; Popović, S.; Tucak, M.; Sudar, R.; Stjepanović, M. Widespread annual legumes in Croatia. In Proceedings of the 5th International Scientific/Professional Conference, Vukovar, Croatia, 4–6 June 2012; Stipešević, B., Sorić, R., Eds.; Glas Slavonije d.d.: Osijek, Croatia, 2012; pp. 220–225. [Google Scholar]
- Carović-Stanko, K.; Liber, Z.; Vidak, M.; Barešić, A.; Grdiša, M.; Lazarević, B.; Šatović, Z. Genetic diversity of Croatian common bean landraces. Front. Plant Sci. 2017, 8, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidak, M.; Šatović, Z.; Liber, Z.; Grdiša, M.; Gunjača, J.; Kilian, A.; Carović-Stanko, K. Assessment of the Origin and Diversity of Croatian Common Bean Germplasm Using Phaseolin Type, SSR and SNP Markers and Morphological Traits. Plants 2021, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- De Ron, A.M.; Rodiño, A.P.; Santalla, M.; González, A.M.; Lema, M.J.; Martín, I.; Kigel, J. Seedling emergence and phenotypic response of common bean germplasm to different temperatures under controlled conditions and in open field. Front. Plant Sci. 2016, 7, 1087. [Google Scholar] [CrossRef] [Green Version]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar]
- Kigel, J.; Rosental, L.; Fait, A. Seed Physiology and Germination of Grain Legumes. In Handbook of Plant Breeding. Grain Legumes; De Ron, A.M., Ed.; Springer Science+Business Media: New York, NY, USA, 2015; pp. 1–434. ISBN 9781493927975. [Google Scholar]
- Lechowska, K.; Kubala, S.; Wojtyla, Ł.; Nowaczyk, G.; Quinet, M.; Lutts, S.; Garnczarska, M. New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. Int. J. Mol. Sci. 2019, 20, 540. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.D.; Black, M. Seeds. Physiology of Development and Germination; Springer: New York, NY, USA, 1994. [Google Scholar]
- Souza, F.H.D.; Marcos-Filho, J. The seed coat as a modulator of seed-environment relationships in Fabaceae. Rev. Bras. Botânica 2001, 24, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.A.; Oliveira, M.D.A.; Matthews, S. The role of imbibition damage in determining the vigour of white and coloured seed lots of dwarf french beans (Phaseolus vulgaris). J. Exp. Bot. 1986, 37, 716–722. [Google Scholar] [CrossRef]
- Borji, M.; Ghorbanli, M.; Sarlak, M. Some seed traits and their relationships to seed germination, emergence rate electrical conductivity in common bean (Phaseolus vulgaris L.). Asian J. Plant Sci. 2007, 6, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Kantar, F.; Pilbeam, C.J.; Hebblethwaite, P.D. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Ann. Appl. Biol. 1996, 128, 85–93. [Google Scholar] [CrossRef]
- Lamichaney, A.; Kudekallu, S.; Kamble, U.; Sarangapany, N.; Katiyar, P.K.; Bohra, A. Differences in seed vigour traits between desi (pigmented) and kabuli (non-pigmented) ecotypes of chickpea (Cicer arietinum) and its association with field emergence Authors. J. Environ. Biol. 2016, 38, 735–742. [Google Scholar] [CrossRef]
- Zhang, X.K.; Chen, J.; Chen, L.; Wang, H.Z.; Li, J.N. Imbibition behavior and flooding tolerance of rapeseed seed (Brassica napus L.) with different testa color. Genet. Resour. Crop Evol. 2008, 55, 1175–1184. [Google Scholar] [CrossRef]
- Koizumi, M.; Kikuchi, K.; Isobe, S.; Ishida, N.; Naito, S.; Kano, H. Role of Seed Coat in Imbibing Soybean Seeds Observed by Micro-magnetic Resonance Imaging. Ann. Bot. 2008, 102, 343–352. [Google Scholar] [CrossRef]
- Campion, B.; Glahn, R.P.; Tava, A.; Perrone, D.; Doria, E.; Sparvoli, F.; Cecotti, R.; Dani, V.; Nielsen, E. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. F. Crop. Res. 2013, 141, 27–37. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [Green Version]
- Tormo, M.A.; Gil-Exojo, I.; Romero de Tejada, A.; Campillo, J.E. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br. J. Nutr. 2006, 96, 539–544. [Google Scholar]
- Al-Karaki, G.N. Seed size and water potential effects on water uptake, germination and growth of lentil. J. Agron. Crop Sci. 1998, 181, 237–242. [Google Scholar] [CrossRef]
- Steiner, F.; Zuffo, A.M.; Busch, A.; De Oliveira Sousa, T.; Zoz, T. Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress? Pesqui. Agropecu. Trop. 2019, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, P.; Massa, D.; Venezia, A.; Cardi, T. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges. Agronomy 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, C.; Jin, J.; Li, D.; Fu, Y.; Yuan, X. High-Throughput Phenotyping of Morphological Seed and Fruit Characteristics Using X-Ray Computed Tomography. Front. Plant Sci. 2020, 11, 601475. [Google Scholar] [CrossRef] [PubMed]
- Varga, F.; Vidak, M.; Ivanović, K.; Lazarević, B.; Širić, I.; Srečec, S.; Šatović, Z.; Carović-Stanko, K. How does computer vision compare to standard colorimeter in assessing the seed coat color of common bean (Phaseolus vulgaris L.)? J. Cent. Eur. Agric. 2019, 20, 1169–1178. [Google Scholar] [CrossRef]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.S.; Moon, J.K.; Kim, K.H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, M.A.; Karaköy, T.; Yeken, M.Z.; Habyarimana, E.; Hatipoglu, R.; Çiftçi, V.; Nawaz, M.A.; Sönmez, F.; Shahid, M.Q.; Yang, S.H.; et al. Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy 2020, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.; Mavi, K. Application of the electrical conductivity test to radish seed (Raphanus sativus). Method Valid. Rep. ISTA 2016, 102–110. [Google Scholar]
- Lisjak, M.; Andriš, L.; Vinkoviš, T.; Stanisavljeviš, A. Dinamika otpuštanja elektrolita iz sjemena soje u fazi imbibicije. In Proceedings of the 44th Croatian and 4th international symposium on agriculture, Opatija, Croatia, 16–20 February 2009; pp. 340–344. [Google Scholar]
- ISTA. Interanational Rules for Seed Testing Asotiation; International Seed Testing Association: Wallisellen, Switzerland, 1993. [Google Scholar]
- Lazarević, B.; Šatović, Z.; Nimac, A.; Vidak, M.; Gunjača, J.; Politeo, O.; Carović-Stanko, K. Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Front. Plant Sci. 2021, 12, 629441. [Google Scholar] [CrossRef]
- Kitajima, M.; Butler, W.L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta-Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Undefined 2004, 25, 173–185. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASSP 1974, 351, 309. [Google Scholar]
- Vidak, M.; Lazarević, B.; Nekić, M.; Šatović, Z.; Carović-Stanko, K. Effect of Hormonal Priming and Osmopriming on Germination of Winter Savory (Satureja montana L.) Natural Population under Drought Stress. Agronomy 2022, 12, 1288. [Google Scholar] [CrossRef]
- Littell, R.C.; Pendergast, J.; Natarajan, R. Tutorial in Biostatistics Modelling covariance structure in the analysis of repeated measures data. Stat. Med. Stat. Med 2000, 19, 1793–1819. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, T.A.; Gomes, G.R.; Vengrus, N.A.d.S.; Anschau, R.; Takahashi, L.S.A. Electrical conductivity test for evaluating physiological quality in snap bean (Phaseolus vulgaris L.) seeds. Aust. J. Crop Sci. 2018, 12, 1561–1565. [Google Scholar] [CrossRef]
- Ayuso, M.; Landín, M.; Gallego, P.P.; Barreal, M.E.; Ayuso, M.; Landín, M.; Gallego, P.P.; Barreal, M.E. Artificial Intelligence Tools to Better Understand Seed Dormancy and Germination. In Seed Dormancy Germination; IntechOpen: London, UK, 2019. [Google Scholar]
- Costa, R.; Pedroso, V.; Madeira, T.; Gândara, J. Water uptake kinetics in soaking of grass pea. Food Sci. Technol. 2022, 42, 1–10. [Google Scholar]
- Balasubramanian, P.; Vandenberg, A.; Hucl, P. Planting date and suboptimal seedbed temperature effects on dry bean establishment, phenology and yield. Can. J. Plant Sci. 2004, 84, 31–36. [Google Scholar] [CrossRef]
- Khan, M.; Cavers, P.B.; Kane, M.; Thompson, K. Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Sci. Res. 1997, 7, 21–25. [Google Scholar] [CrossRef]
- Wyatt, J.E. Seed Coat and Water Absorption Properties of Seed of Near-isogenic Snap Bean Lines Differing in Seed Coat Color1. J. Am. Soc. Hortic. Sci. 2022, 102, 478–480. [Google Scholar] [CrossRef]
- Li, X.; Welbaum, G.E.; Rideout, S.L.; Singer, W.; Zhang, B.; Li, X.; Welbaum, G.E.; Rideout, S.L.; Singer, W.; Zhang, B. Vegetable Soybean and Its Seedling Emergence in the United States. In Legumes Research; Jimenez-Lopez, J.C., Clemente, A., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 1–25. ISBN 978-1-83969-491-2. [Google Scholar]
- Mandizvo, T.; Odindo, A.O. Seed coat structural and imbibitional characteristics of dark and light coloured Bambara groundnut (Vigna subterranea L.) landraces. Heliyon 2019, 5, e01249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Qin, W.T.; Wu, H.J.; Yang, C.Q.; Deng, J.C.; Iqbal, N.; Liu, W.G.; Du, J.B.; Shu, K.; Yang, F.; et al. Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L. Merr.) seeds. Food Chem. 2017, 223, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Kikuzawa, K.; Koyama, H. Scaling of soil water absorption by seeds: An experiment using seed analogues. Seed Sci. Res. 1999, 9, 171–178. [Google Scholar] [CrossRef]
- Souza, M.L.; Fagundes, M. Seed Size as Key Factor in Germination and Seedling Development of Copaifera langsdorffii (Fabaceae). Am. J. Plant Sci. 2014, 05, 2566–2573. [Google Scholar] [CrossRef] [Green Version]
- França-Neto, J.d.B.; Krzyzanowski, F.C. Tetrazolium: An important test for physiological seed quality evaluation. J. Seed Sci. 2019, 41, 359–366. [Google Scholar] [CrossRef]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Seed quality characteristics of a bambara groundnut (Vigna subterranea L.) landrace differing in seed coat colour. South Afr. J. Plant Soil 2014, 31, 219–226. [Google Scholar] [CrossRef]
- Norsazwan, M.G.; Sinniah, U.R.; Puteh, A.B.; Namasivayam, P.; Appleton, D.R.; Mohaimi, M.; Aminuddin, I.A. Association of seed colour with germination, physical and physiological growth of oil palm (Elaeis guineensis) seedlings. J. Oil Palm Res. 2022, 34, 68–78. [Google Scholar]
- Ozden, E.; Ermis, S.; Demir, I. Evaluation of Seed Vigour in White Coat French Bean (Phaseolus vulgaris L.) Seed Lots Under Waterlogged or Field Capacity Conditions. J. Inst. Sci. Technol. 2019, 9, 1860–1865. [Google Scholar]
- Fatokun, K.; Beckett, R.P.; Varghese, B. A Comparison of Water Imbibition and Controlled Deterioration in Five Orthodox Species. Agronomy 2022, 12, 1486. [Google Scholar] [CrossRef]
- Czarna, M.; Kolodziejczak, M.; Janska, H. Mitochondrial Proteome Studies in Seeds during Germination. Proteomes 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Paszkiewicz, G.; Gualberto, J.M.; Benamar, A.; Macherel, D.; Logan, D.C. Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth. Plant Cell. 2017, 29, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Golin, S.; Negroni, Y.L.; Bennewitz, B.; Klösgen, R.B.; Mulisch, M.; La Rocca, N.; Cantele, F.; Vigani, G.; Lo Schiavo, F.; Krupinska, K.; et al. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. Plant Direct 2020, 4, e00229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ciu, Y.; Zhang, L.; Wang, Y.; Li, J.; Yan, G.; Hu, L. Seed coat color determines seed germination, seedling growth and seed composition of canola (Brassica napus). Int. J. Agric. Biol. 2013, 15, 535–540. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.M.F.; Rodrigues, A.P.; António, C.; Rodrigues, A.M.; Leitão, A.E.; Batista-Santos, P.; Nhantumbo, N.; Massinga, R.; Ribeiro-Barros, A.I.; Ramalho, J.C. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 2020, 175, 104060. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Filella, L. Technical focus: Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Ayeh, K.O.; Peter, A.K.; Grace, A.E. Physiological, developmental and growth responses to desiccation induced stress in four seed coat colour varieties of Vigna unguiculata (L. Walp). Afr. J. Agric. Res. 2021, 17, 642–657. [Google Scholar]
Landrace | Color of Seed Coat | Seed Size | 100-Seed Weight (g) | Location | Latitude | Longitude | ||
---|---|---|---|---|---|---|---|---|
C1 | ‘Biser’ | white | small | 18.58 | Mali Bukovec | 46.29 N | 16.74 E | |
C2 | ‘Bijeli’ | white | large | 39.91 | Kusać-Soljani | 44.95 N | 18.97 E | |
C3 | ‘Kornjača’ | black | small | 21.09 | Ivanovec | 46.37 N | 16.48 E | |
C4 | ‘Trešnjevac’ | dark red | large | 40.80 | Fužine | 45.30 N | 14.71 E |
Abbrev. | Trait | Wavelength/Equation |
---|---|---|
Fv/Fm | Maximum Efficiency of Photosystem Two | Fv/Fm = (Fm – F0)/Fm [33] |
Fq’/Fm’ | Effective Quantum Yield of Photosystem Two | Fq’/Fm’ = (Fm’ – Fs’)/Fm’ [34] |
ETR | Electron Transport Rate | ETR = Fq’/Fm’ × PPFD × (0.5) [34] |
NPQ | Non-Photochemical Quenching | NPQ = (Fm – Fm’)/Fm’ [35] |
Abbrev. | Trait | Wavelength/Equation |
---|---|---|
RRed | Reflectance in Red | 640 nm |
RGreen | Reflectance in Green | 550 nm |
RBlue | Reflectance in Blue | 475 nm |
RSpcGrn | Reflectance in Specific Green, | 510–590 nm |
RFarRed | Reflectance in Far Red | 710 nm |
RNIR | Reflectance in Near Infra-Red | 769 nm |
HUE | Hue (0–360°) | HUE = 60 × (0 + (RGreen − RBlue)/(max − min)), if max = RRed; HUE = 60 × (2 + (RBlue − RRed)/(max − min)), if max = RGreen; HUE = 60 × (4 + (RRed − RGreen)/(max − min)) if max = RBlue; 360 was added in case HUE < 0 |
SAT | Saturation (0–1) | SAT = (max − min)/(max + min) if VAL > 0.5, or SAT = (max − min)/(2.0 − max − min) if VAL < 0.5, where max and min are selected from the RRed, RGreen, RBlue |
VAL | Value (0–1) | VAL = (max + min)/2; where max and min are selected from the RRed, RGreen, RBlue |
ARI | Anthocyanin Index | ARI = (R550)−1 − (R700)−1 [36](Gitelson et al., 2001) |
CHI | Chlorophyll Index | CHI = (R700)−1 − (R769)−1 [37] |
NDVI | Normalized Differential Vegetation Index | NDVI = (RNIR – RRed)/(RNIR + RRed) [38] |
Time (h) | 1.5 | 3 | 6 | 9 | 12 | 20 | 24 | EC24 (ms m−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P(F) | *** | *** | *** | ** | * | * | ns | *** | ||||||||
C1 | 61.25 | A | 88.02 | A | 115.62 | A | 116.87 | AB | 120.85 | AB | 122.33 | AB | 127.05 | A | 82.12 | C |
C2 | 22.96 | C | 60.41 | B | 107.20 | B | 120.06 | A | 124.52 | A | 127.86 | A | 128.75 | A | 177.87 | A |
C3 | 40.88 | B | 86.80 | A | 111.40 | AB | 117.58 | A | 120.11 | AB | 123.14 | AB | 125.08 | A | 56.45 | D |
C4 | 8.45 | D | 38.74 | C | 95.41 | C | 110.33 | B | 115.57 | B | 119.25 | B | 121.76 | A | 114.57 | B |
Contrast W vs. C P(F) | *** | ** | ** | * | * | * | * | *** | ||||||||
Contrast S vs. L P(F) | *** | *** | *** | ns | ns | ns | ns | *** |
Var | G | MGT | CVgt | MGR | U | Z | GI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landrace—P(F) | ns | ** | *** | *** | * | ** | *** | |||||||
Repetition—P(F) | ns | ns | ns | ns | ns | ns | ns | |||||||
C1 | 1.57 | A | 1.83 | C | 0.35 | B | 0.55 | A | 0.93 | A | 0.61 | B | 29.89 | A |
C2 | 1.46 | A | 2.32 | AB | 0.43 | B | 0.43 | BC | 0.95 | A | 0.54 | B | 22.00 | BC |
C3 | 1.48 | A | 2.13 | BC | 0.59 | A | 0.47 | B | 0.62 | B | 0.80 | A | 24.63 | B |
C4 | 1.57 | A | 2.71 | A | 0.38 | B | 0.37 | C | 0.97 | A | 0.60 | B | 19.33 | C |
Contrast W vs. C P(F) | ns | ** | ** | ** | * | ** | *** | |||||||
Contrast S vs. L P(F) | ns | *** | * | *** | * | ** | *** |
Var | E | MET | CVet | MER | UE | ZE | EI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landrace—P(F) | ns | * | * | * | ns | * | ** | |||||||
Repetition—P(F) | ns | ns | ns | ns | ns | ns | ns | |||||||
C1 | 1.43 | A | 3.63 | B | 0.46 | AB | 0.28 | A | 1.13 | A | 0.51 | AB | 13.95 | A |
C2 | 1.43 | A | 4.23 | A | 0.37 | AB | 0.24 | B | 1.13 | A | 0.55 | AB | 11.77 | B |
C3 | 1.53 | A | 3.83 | AB | 0.50 | A | 0.26 | AB | 1.30 | A | 0.46 | B | 13.52 | A |
C4 | 1.41 | A | 4.13 | A | 0.35 | B | 0.24 | AB | 0.95 | A | 0.64 | A | 11.94 | B |
Contrast W vs. C P(F) | ns | ns | ns | ns | ns | ns | ns | |||||||
Contrast S vs. L P(F) | ns | ** | ** | ** | ns | * | *** |
Abbr. | Fv/Fm | Fq’/Fm’ | ETR | NPQ | ||||
---|---|---|---|---|---|---|---|---|
Landrace—P(F) | *** | *** | *** | *** | ||||
Repetition—P(F) | ** | ns | ns | ** | ||||
C1 | 0.80 | A | 0.30 | B | 7556 | C | 1.18 | A |
C2 | 0.79 | C | 0.38 | A | 10058 | A | 1.03 | B |
C3 | 0.81 | A | 0.23 | C | 6093 | D | 1.20 | A |
C4 | 0.80 | B | 0.39 | A | 8936 | B | 0.94 | B |
Contrast W vs. C P(F) | *** | *** | *** | ns | ||||
Contrast S vs. L P(F) | *** | *** | *** | *** |
Abbr. | RRed | RGreen | RBlue | HUE | SAT | VAL | SpcGrn | RFarRed | RNIR | CHI | ARI | NDVI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landrace—P(F) | *** | *** | *** | *** | *** | *** | *** | *** | ** | *** | *** | *** |
Repetition—P(F) | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
C1 | 913 AB | 1542 B | 708 A | 105.0 B | 0.54 B | 0.02 B | 1795 B | 3575 B | 14564 B | 3.0B | 4.13 C | 0.88 C |
C2 | 942 A | 1714 A | 631 B | 103.0 C | 0.63 A | 0.03 A | 2020 A | 3844 A | 14747 B | 2.8C | 3.61 D | 0.88 C |
C3 | 865 B | 1473 B | 664 AB | 105.4 B | 0.55 B | 0.02 B | 1719 B | 3672 B | 15511 A | 3.2B | 4.92 B | 0.89 B |
C4 | 733 C | 1254 C | 578 C | 106.8 A | 0.54 B | 0.02 C | 1456 C | 3103 C | 14538 B | 3.7A | 5.53 A | 0.90 A |
Contrast W vs. C P(F) | *** | *** | *** | *** | *** | *** | *** | *** | ns | *** | *** | *** |
Contrast S vs. L P(F) | ** | ns | *** | ns | *** | ns | ns | *** | ns | * | ns | ns |
Abbr. | gsw | gbw | gtw | T | ||||
---|---|---|---|---|---|---|---|---|
Landrace—P(F) | *** | ns | *** | *** | ||||
Repetition—P(F) | ns | ns | ns | ns | ||||
C1 | 0.18 | B | 2.92 | A | 0.17 | B | 1.87 | B |
C2 | 0.091 | C | 2.92 | A | 0.09 | C | 1.07 | C |
C3 | 0.232 | A | 2.92 | A | 0.21 | A | 2.55 | A |
C4 | 0.088 | C | 2.92 | A | 0.09 | C | 0.99 | C |
Contrast W vs. C P(F) | *** | ns | *** | *** | ||||
Contrast S vs. L P(F) | *** | ns | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidak, M.; Lazarević, B.; Javornik, T.; Šatović, Z.; Carović-Stanko, K. Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color. Seeds 2022, 1, 324-339. https://doi.org/10.3390/seeds1040027
Vidak M, Lazarević B, Javornik T, Šatović Z, Carović-Stanko K. Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color. Seeds. 2022; 1(4):324-339. https://doi.org/10.3390/seeds1040027
Chicago/Turabian StyleVidak, Monika, Boris Lazarević, Tomislav Javornik, Zlatko Šatović, and Klaudija Carović-Stanko. 2022. "Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color" Seeds 1, no. 4: 324-339. https://doi.org/10.3390/seeds1040027
APA StyleVidak, M., Lazarević, B., Javornik, T., Šatović, Z., & Carović-Stanko, K. (2022). Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color. Seeds, 1(4), 324-339. https://doi.org/10.3390/seeds1040027