Studies on the Germination and Emergence of Castor Seedlings
Abstract
:1. Introduction
2. Material and Methods
2.1. Imbibition and Germination Influenced by Temperature and a Puncture on the Seed Coat
2.2. Visual Analysis of the Rupture on the Seed Coat
2.3. Morphological Characteristics Influencing the Time for Germination
2.4. Selection for Fast Germination Modifying Castor Seed Morphology
2.5. Gibberellin Influencing Castor Seed Germination
2.6. Emergence of Pre-Germinated Castor Seed
3. Results
3.1. Temperature and Seed Coat Puncture Influencing Seed Hydration
3.2. Temperature and Seed Coat Puncture Influencing the Time for Germination
3.3. Seed Coat Restricting Embryo Growth
3.4. Time for Germination According to the Seed Morphology
3.5. Selection for Fast Germination Influencing Morphological Characteristics
3.6. Gibberellin Influencing Castor Seed Germination
3.7. Emergence of Pre-Germinated Castor Seed and Shoot Biomass Initial Growth
4. Discussion
4.1. Castor Seed Coat Is Permeable to Water
4.2. Temperature Plays a Pivotal Role in Castor Seed Germination
4.3. The Seed Coat Restricts the Germination of Castor Seed
4.4. Morphological Traits Have Small Influence on the Time for Germination
4.5. Selection for Fast Germination Altered Castor Seed Morphology
4.6. Pre-Germination Treatments and Initial Growth
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witt, T.W.; Flynn, K.C.; Zoz, T.; Lee, T.O.; Monteiro, J.E.B.A. A site suitability analysis for castor (Ricinus communis L.) production during Brazil’s second harvest incorporating disease prediction. Helyon 2023, 9, e18981. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, A.; Ying, S.; Lu, J.; Xie, Y.; Amoanimaa-Dede, H.; Boateng, K.G.A.; Chen, M.; Yin, X. Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties. Food Sci. Technol. 2021, 41, 399–413. [Google Scholar] [CrossRef]
- Mendes, R.C.; Dias, D.C.F.S.; Pereira, M.D.; Berger, P.G. Pre-germinative treatments in castor bean (Ricinus communis L.) seeds. Rev. Bras. Sementes 2009, 31, 187–194. [Google Scholar] [CrossRef]
- Severino, L.S. Single-seed selection of fast-germinating genotypes of castor (Ricinus communis). Ind. Crops Prod. 2023, 194, 116307. [Google Scholar] [CrossRef]
- de Carvalho, M.L.M.; Alves, R.A.; Oliveira, L.M.D. Radiographic analysis in castor bean seeds (Ricinus communis L.). Rev. Bras. Sementes 2010, 32, 170–175. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, G.; Osuna, P.; Ganjegunte, G.; Auld, D.; Zhao, L.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Seedling emergence, growth, and leaf mineral nutrition of Ricinus communis L. cultivars irrigated with saline solution. Ind. Crops Prod. 2013, 49, 75–80. [Google Scholar] [CrossRef]
- Gardarin, A.; Colbach, N. How much of seed dormancy in weeds can be related to seed traits? Weed Res. 2015, 55, 14–25. [Google Scholar] [CrossRef]
- Martins, V.F.; Haddad, C.R.B.; Semir, J. Seed germination of Ricinus communis in predicted settings after autochorous and myrmecochorous dispersal. J. Torrey Bot. Soc. 2009, 136, 84–90. [Google Scholar] [CrossRef]
- Cheema, N.M.; Azim Malik, M.; Qadir, G.; Zubair Rafique, M.; Nawaz, N. Influence of temperature and osmotic stress on germination induction of different castor bean cultivars. Pak. J. Bot. 2010, 42, 4035–4041. [Google Scholar]
- Lago, A.A.; Zink, E.; Razera, L.F.; Banzatto, N.V.; Filho, A.S. Seed dormancy of three castor bean cultivars. Bragantia 1979, 38, 41–44. [Google Scholar] [CrossRef]
- Ribeiro, P.R.; Willems, L.A.; Mudde, E.; Fernandez, L.G.; de Castro, R.D.; Ligterink, W.; Hilhorst, H.W. Metabolite profiling of the oilseed crop Ricinus communis during early seed imbibition reveals a specific metabolic signature in response to temperature. Ind. Crops Prod. 2015, 67, 305–309. [Google Scholar] [CrossRef]
- Severino, L.S. Plants make smart decisions in complex environments. Plant Signal. Behav. 2021, 16, e1970448-2. [Google Scholar] [CrossRef]
- Souza, L.A.; Carvalho, M.L.M.; Kataoka, V.Y.; Oliveira, J.A. Eletrical conductivity test to evaluate physiological quality of castor bean seeds. Rev. Bras. Sementes 2009, 31, 60–67. [Google Scholar] [CrossRef]
- David, A.M.S.d.S.; Araújo, E.F.; Araújo, R.F.; de Resende, M.A.V.; Dias, D.C.F.d.S.; Nobre, D.A.C. Physiological quality of castor bean seeds originating from different racemes in the plant. J. Seed Sci. 2013, 35, 248–254. [Google Scholar] [CrossRef]
- Drumond, A.A.L.; Sales, J.d.F.; Zuchi, J.; Camelo, G.N.; Souza, M.M.V. Physiological quality of castor seeds (Ricinus communis L.) after processing. J. Seed Sci. 2019, 41, 224–232. [Google Scholar] [CrossRef]
- Zuchi, J.; Panozzo, L.E.; Heberle, E.; Dias, D.C.F.S. Physiological quality of castor bean seeds classified by size. Rev. Bras. Sementes 2010, 32, 177–183. [Google Scholar] [CrossRef]
- Nobre, D.A.C.; Damascena, J.G.; David, A.M.S.S.; Santos, M.P.; Pereira, A.R.; Pereira, C.G. Pre-germination treatments in castor seeds, cultivar IAC 226. Acta Biol. Colomb. 2013, 18, 473–478. [Google Scholar]
- Qutob, D.; Ma, F.; Peterson, C.A.; Bernards, M.A.; Gijzen, M. Structural and permeability properties of the soybean seed coat. Botany 2008, 86, 219–227. [Google Scholar] [CrossRef]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar]
- Coughlan, J.M.; Saha, A.; Donohue, K. Effects of pre- and post-dispersal temperature on primary and secondary dormancy dynamics in contrasting genotypes of Arabidopsis thaliana (Brassicaceae). Plant Species Biol. 2017, 32, 210–222. [Google Scholar] [CrossRef]
- Duclos, D.V.; Altobello, C.O.; Taylor, A.G. Investigating seed dormancy in switchgrass (Panicum virgatum L.): Elucidating the effect of temperature regimes and plant hormones on embryo dormancy. Ind. Crops Prod. 2014, 58, 148–159. [Google Scholar] [CrossRef]
- Lamichaney, A.; Basavaraja, T.; Katiyar, P.K.; Singh, N.P. Seed germination response of commonbean (Phaseolus vulgaris L.) genotypes to optimal and sub-optimal temperatures. Legume Res. 2021, 44, 419–424. [Google Scholar] [CrossRef]
- Bradbeer, J.W. Seed Dormancy and Germination; Blackie and Son Ltd.: London, UK, 1988; 146p. [Google Scholar]
- Da Silva, E.A.A.; Toorop, P.E.; Van Aelst, A.C.; Hilhorst, H.W.M. Abscisic acid controls embryo growth potential and endo-sperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 2004, 220, 251–261. [Google Scholar] [CrossRef]
- Duclos, D.V.; Ray, D.T.; Johnson, D.J.; Taylor, A.G. Investigating seed dormancy in switchgrass (Panicum virgatum L.): Understanding the physiology and mechanisms of coat-imposed seed dormancy. Ind. Crops Prod. 2013, 45, 377–387. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Luo, F.; Wang, Y.; Xu, C.; Jiang, J. The influence of seed structures on dormancy in seeds of Urochloa hybrid cultivar ‘Mulato Ⅱ’. Trop. Grassl. Forrajes Trop. 2022, 10, 156–163. [Google Scholar] [CrossRef]
- Müller, K.; Tintelnot, S.; Leubner-Metzger, G. Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 864–877. [Google Scholar] [CrossRef]
- Steinbrecher, T.; Leubner-Metzger, G. The biomechanics of seed germination. J. Exp. Bot. 2017, 68, 765–783. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shen, Y. Dormancy in Tilia miqueliana is attributable to permeability barriers and mechanical constraints in the endosperm and seed coat. Braz. J. Bot. 2021, 44, 725–740. [Google Scholar] [CrossRef]
- Christie, K.; Pierson, N.R.; Lowry, D.B.; Holeski, L.M. Local adaptation of seed and seedling traits along a natural aridity gradient may both predict and constrain adaptive responses to climate change. Am. J. Bot. 2022, 109, 1529–1544. [Google Scholar] [CrossRef]
- Notarnicola, R.F.; Nicotra, A.B.; Kruuk, L.E.B.; Arnold, P.A. Effects of warming temperatures on germination responses and trade-offs between seed traits in an alpine plant. J. Ecol. 2022, 111, 62–76. [Google Scholar] [CrossRef]
- Vertucci, C.W. The kinetics of seed imbibition: Controlling factors and relevance to seedling vigor. Seed Moisture 2015, 14, 93–115. [Google Scholar]
- Severino, L.S.; Auld, D.L. Seed abortion and the individual weight of castor seed (Ricinus communis L.). Ind. Crops Prod. 2013, 49, 890–896. [Google Scholar] [CrossRef]
- Klamkin, M.S. Corrections to “Elementary approximations to the area of N-dimensional ellipsoids”. Am. Math. Mon. 1976, 83, 478. [Google Scholar] [CrossRef]
- Meyer, C.J.; Steudle, E.; Peterson, C.A. Patterns and kinetics of water uptake by soybean seeds. J. Exp. Bot. 2007, 58, 717–732. [Google Scholar] [CrossRef]
- Silva, A.R.; Leão-Araújo, É.F.; Rezende, B.R.; Santos, W.V.; Santana, H.A.; Silva, S.C.M.; Ferdandes, N.A.; Costa, D.S.; Mesquita, J.C.P. Modeling the three phases of the soaking kinetics of seeds. Agron. J. 2018, 110, 164–170. [Google Scholar] [CrossRef]
- Drumond, A.A.L.; Sales, J.d.F.; Zuchi, J.; Resende, O.; Camelo, G.N.; Souza, M.M.V. Physiological quality of castor bean seed genotypes stored at two temperatures. Acta Sci. Agron. 2019, 42, e43583. [Google Scholar] [CrossRef]
- Lara, B.Y.A.; Ramírez-Pimentel, J.G.; Mancilla, C.L.A.; Prieto, J.C.; Pérez, J.C.R. Breaking dormancy in castor bean (Ricinus communis L.) seeds. Interciencia 2018, 43, 858–863. [Google Scholar]
- Machado, C.G.; Martins, C.C.; Cruz, S.C.S.; Nakagawa, J.; Pereira, F.R.S. Quality of castor bean seeds (Ricinus communis L.) affected by raceme and fruit position during storage. Semin. Ciências Agrárias 2010, 31, 301–312. [Google Scholar] [CrossRef]
- Luo, Y.; Loomis, R.S.; Hsiao, T.C. Simulation of soil temperature in crops. Agric. For. Meteorol. 1992, 61, 23–38. [Google Scholar] [CrossRef]
- Silva, V.R.; Reichert, J.M.; Reinert, D.J. Soil temperature variation in three different systems of soil management in blackbeans crop. Rev. Brasil. Ciênc. Solo 2006, 30, 391–399. [Google Scholar] [CrossRef]
- Singh, J.; Guzman, I.; Begna, S.; Trostle, C.; Angadi, S. Germination and early growth response of guar cultivars to low temperatures. Ind. Crops Prod. 2021, 159, 113082. [Google Scholar] [CrossRef]
- Streck, E.A.; Aguiar, G.A.; da Silva, P.U.; Fronza, R.T.L.; Junior, A.M.d.M. Genetic tolerance to low temperatures in irrigated rice. Rev. Cienc. Agron. 2020, 51, e20196938. [Google Scholar] [CrossRef]
- Tobeh, A.; Jamaati-e-Somarin, S. Low temperature stress effect on wheat cultivars germination. Afr. J. Microbiol. Res. 2012, 6, 1265–1269. [Google Scholar]
- Leubner-Metzger, G. Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci. Res. 2003, 13, 17–34. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Xiao, J.; Fan, Y.; Song, S.; Zhang, Y.; Liu, X. Research on structural–mechanical properties during the castor episperm breaking process. Processes 2021, 9, 1777. [Google Scholar] [CrossRef]
- Severino, L.S.; Cordoba, O.J.; Zanotto, M.D.; Auld, D.L. The influence of the caruncle on the germination of castor seed under high salinity or low soil water content. Seed Sci. Technol. 2012, 40, 139–143. [Google Scholar] [CrossRef]
- Moshkin, V.A. Castor; Amerind: New Delhi, India, 1986; pp. 34–36. [Google Scholar]
- Kimmelshue, C.L.; Goggi, S.; Moore, K.J. Seed size, planting depth, and a perennial groundcover system effect on corn emergence and grain yield. Agronomy 2022, 12, 437. [Google Scholar] [CrossRef]
- Bockstaller, C.; Girardin, P. Effects of seed size on maize growth from emergence to silking. Maydica 1994, 39, 213–218. [Google Scholar]
- Gislum, R.; Nikneshan, P.; Shrestha, S.; Tadayyon, A.; Deleuran, L.C.; Boelt, B. Characterisation of castor (Ricinus communis L.) seed quality using Fourier transform near-infrared spectroscopy in combination with multivariate data analysis. Agriculture 2018, 8, 59. [Google Scholar] [CrossRef]
- Westoby, M.; Jurado, E.; Leishman, M. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 1992, 7, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, O.; Jakobsson, A. Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evol. Ecol. 1999, 13, 411–423. [Google Scholar] [CrossRef]
- Severino, L.S.; Oliveira, E. Plant growth regulators influence the height and biomass partition of castor plants. Braz. J. Agric. Environ. Eng. 2024, 28, e276554. [Google Scholar]
Morphological Characteristic | Germinated Seeds | Ungerminated Seeds |
---|---|---|
Seed weight (g) | 0.364 a | 0.332 b |
Seed volume (cm3) | 0.367 a | 0.358 a |
Volumetric density (g·cm−3) | 0.993 a | 0.923 b |
Seed coat thickness (g·cm−2) | 20.90 a | 19.96 b |
Relative weight of seed coat (%) | 21.14 a | 22.25 b |
Morphological Characteristic | Regression Coefficient | Significance |
---|---|---|
Seed weight (g) | −376.49 | 0.4593 |
Seed volume (cm3) | 610.30 | 0.2269 |
Volumetric density (g·cm−3) | 215.99 | 0.2771 |
Seed coat thickness (g·cm−2) | −4.29 | 0.1336 |
Seed coat relative weight (%) | 9.45 | 0.0003 |
Morphological Characteristic | S0 | S1 | S2 | S3 |
---|---|---|---|---|
Seed weight (g) | 0.362 a | 0.275 bc | 0.285 b | 0.250 c |
Seed coat weight (mg) | 75.8 a | 62.9 b | 66.7 b | 64.9 b |
Caruncle relative weight (%) 1 | 0.91 c | 1.60 b | 1.71 ab | 1.71 a |
Seed coat relative weight (%) 1 | 20.9 c | 22.9 b | 23.3 b | 25.7 a |
Seed area (mm2) | 251.0 a | 228.7 b | 234.9 ab | 232.2 b |
Seed volume (mm3) | 338.3 a | 297.6 b | 307.6 ab | 305.9 b |
Seed coat density (mg/mm2) | 0.298 a | 0.280 b | 0.282 ab | 0.281 b |
Seed volumetric density (mg/mm3) | 1.06 a | 0.94 b | 0.95 b | 0.86 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino, L.S. Studies on the Germination and Emergence of Castor Seedlings. Seeds 2024, 3, 251-268. https://doi.org/10.3390/seeds3020019
Severino LS. Studies on the Germination and Emergence of Castor Seedlings. Seeds. 2024; 3(2):251-268. https://doi.org/10.3390/seeds3020019
Chicago/Turabian StyleSeverino, Liv S. 2024. "Studies on the Germination and Emergence of Castor Seedlings" Seeds 3, no. 2: 251-268. https://doi.org/10.3390/seeds3020019
APA StyleSeverino, L. S. (2024). Studies on the Germination and Emergence of Castor Seedlings. Seeds, 3(2), 251-268. https://doi.org/10.3390/seeds3020019