Carcass Characteristics and Meat Quality of Ross 308 Broiler Chickens Fed Malted Red and White Sorghum-Based Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Ethical Consideration
2.2. Feed Formulation
2.3. Experimental Design and Management of Birds
2.4. Slaughter Procedure, Carcass Traits and Visceral Organ Measurements
2.5. Meat pH
2.6. Proximate Analysis of Breast Muscle
2.7. Mineral Content of Breast Muscle
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumaravel, V.A.; Natarajan, A. Replacement of maize with pearl millet in broiler diet—A review. Int. J. Sci. Environ. Technol. 2014, 3, 2197–2204. [Google Scholar]
- Gualtieri, M.; Rapaccinim, S. Sorghum grain in poultry feeding. Worlds Poult. Sci. J. 1990, 46, 246–253. [Google Scholar] [CrossRef]
- Beyer, S. Feeding Value Benefits of Sorghum for Poultry. Available online: https://www.sorghumcheckoff.com/ (accessed on 15 April 2019).
- Munamava, M.; Riddoch, I. Response of three sorghum (Sorghum bicolor L. Moench) varieties to soil moisture stress at different developmental stages. S. Afr. J. Plant Soil 2001, 18, 75–79. [Google Scholar] [CrossRef]
- Dei, H.K. Assessment of maize (Zea mays) as feed resource for poultry. In Poult SciII; Manafi, M., Ed.; Intech Open Limited: London, UK, 2017; pp. 1–32. [Google Scholar]
- Hassan, I.A.G.; Elzubeir, E.A.; El Tinay, A.H. Growth and apparent absorption of minerals in broiler chicks fed diets with low or high tannin contents. Trop. Anim. Health Prod. 2003, 35, 189–196. [Google Scholar] [CrossRef]
- Oke, F.O.; Fafiolu, A.O.; Jegege, A.V.; Oduguwa, O.O.; Adeoye, S.A.; Olorunsola, S.A.; Oso, A.O.; Onasanya, G.O.; Adedire, A.O.; Muhammed, A.I. Performance and nutrient utilisation of broilers fed malted sorghum sprout (MSP), or wheat-offal based diets supplemented with yeast culture and enzyme. Online J. Anim. Feed Res. 2015, 5, 78–84. [Google Scholar]
- Selle, P.H.; Moss, A.F.; Truong, H.H.; Ali, K.A.; Cadogan, D.J.; Godwin, I.D.; Sonia, Y.; Liu, S.Y. Sorghum as a feed grain for Australian chicken-meat production. Anim. Nutr. 2018, 4, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Setimela, P.; Manthe, C.S.; Mazhani, L.; Obilana, A.B. Release of three grain sorghum pure line varieties in Botswana. S. Afr. J. Plant Soil 1997, 14, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Badubi, S.S. Nutritive evaluation of four sorghum cultivars grown in Botswana. UNISWA J. Agric. 2012, 16, 49–54. [Google Scholar]
- Medugu, C.I.; Saleh, B.; Igwebuike, J.U.; Ndirmbita, R.L. Strategies to improve the utilisation of tannin-rich feed materials by poultry. Int. J. Poult. Sci. 2012, 11, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Fafiolu, A.O.; Oduguwa, O.O.; Ikeobi, C.O.N.; Onwuka, C.F.I. Utilisation of malted sorghum sprout in the diet of rearing pullets and laying hens. Arch. Zootec. 2006, 55, 361–371. [Google Scholar]
- Legodimo, M.D.; Madibela, O.R. Effect of sorghum variety on chemical composition and in vitro digestibility of malted grains from Botswana. Botsw. J. Agric. Appl. Sci. 2013, 9, 104–108. [Google Scholar]
- Mabelebele, M.; Gous, R.M.; Masey O’Neil, H.V.; Iji, P.A. Whole sorghum inclusion and feed form on performance and nutrient digestibility of broiler chickens. J. Appl. Anim. Nutr. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Statistical Analysis System Institute Inc. Users Guide; SAS: Carry, NC, USA, 2010. [Google Scholar]
- Adeboye, F.; Vincent, J.; Oladele, O.; Olusegun, I.; Richard, S.; Ifeoluwa, O. Effect of multi-enzyme supplementation of malted sorghum sprout to broiler chicks. Br. Poult. 2012, 8, 50–52. [Google Scholar]
- Oke, F.O.; Oso, A.O.; Adeyemi, A.O.; Fafiolu, A.O.; Jegede, A.V.; Oduguwa, O.O. Response of Turkey poults to diets containing malted sorghum sprouts supplemented with enzyme or yeast. Br. Poult. 2012, 8, 24–25. [Google Scholar]
- Oduguwa, O.O.; Südekum, K.H.; Lohakare, J.; Abdel-Wareth, A.; Pirgozliev, V. Dry matter digestibility and energy metabolisability by broiler chickens fed malted sorghum sprouts treated with rumen filtrate, protease or glucanase. Br. Poult. 2012, 8, 22–23. [Google Scholar]
- Tedeschi, L.O.; Ramírez-Restrepo, C.A.; Muir, J.P. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal 2014, 8, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Nian, F.; Guo, Y.M.; Ru, Y.J.; Li, F.D.; Péron, A. Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets. AAAP 2011, 24, 400–406. [Google Scholar] [CrossRef]
- Nian, F.; Guo, Y.M.; Ru, Y.J.; Péron, A.; Li, F.D. Effect of xylanase supplementation on the net energy for production, performance and gut microflora of broilers fed corn/soy-based diet. Asian-Australas J. Anim. Sci. 2011, 24, 1282–1287. [Google Scholar] [CrossRef]
- Yaşar, A.; Gök, M.S.; Ygürbü, Y. Performance of broilers fed raw or fermented and red dried wheat, barley, and oat grains. Turk. J. Vet. Anim. Sci. 2016, 40, 313–322. [Google Scholar] [CrossRef]
- Fasuyi, A.O.; Olumuyiwa, T.A. Evaluating nutritional potential of bio-fermented rice husk in broilers diets. Am. J. Food Technol. 2012, 7, 726–735. [Google Scholar] [CrossRef]
- Zhai, S.S.; Tian, L.X.F.; Zhang, H.; Wang, M.M.; Li, X.C.; Li, J.L.; Liu, H.; Yang, W.C.; Zhu, Y.W.; Yang, L. Effects of sources and levels of liquor distiller’s grains with solubles on the growth performance, carcass characteristics, and serum parameters of Cherry Valley ducks. Poult. Sci. 2020, 99, 6258–6266. [Google Scholar] [CrossRef]
- Ao, T.; Cantor, A.H.; Pescatore, A.J.; Pierce, J.L. In vitro evaluation of feed grade enzymes activity at pH levels stimulating various parts of the avian digestive tract. Anim. Feed Sci. Technol. 2008, 140, 462–468. [Google Scholar] [CrossRef]
- Dyubele, N.L.; Muchenje, V.; Nkukwana, T.; Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 2010, 21, 815–819. [Google Scholar] [CrossRef]
- Deniz, G.; Orhan, F.H.; Eren, M.; Gezen, S.S.; Turkmen, I.I. Effects of different levels of rice bran with and without enzyme on performance and size of the digestive organs of broiler chickens. Rev. Med. Vet. 2007, 158, 336–343. [Google Scholar]
- Jorgensen, H.; Zhao, X.Q.; Knudsen, K.E.B.; Eggum, B.O. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Br. J. Nutr. 1996, 15, 379–395. [Google Scholar] [CrossRef]
- Manyeula, F.; Mlambo, V.; Marume, U.; Sebola, A. Partial replacement of soybean products with canola meal in indigenous chicken diets: Size of internal organs, carcass characteristics and breast meat quality. Poult. Sci. 2020, 99, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Moses, C.; Radikara, M.V.; Manyeula, F.; Mareko, M.H.D.; Madibela, O.R. Chemical Composition of Malted and Unmalted Red and White Sorghum Grown in Botswana; Botswana University of Agriculture and Natural Resources: Gaborone, Botswana, 2022; manuscript in preparation. [Google Scholar]
- Mnisi, C.M.; Mlambo, V. Growth performance, haematology, serum biochemistry and meat quality characteristics of Japanese quails (Coturnix coturnix japonica) fed canola meal-based diets. Anim. Nutr. 2018, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.A.; Carolino, A.C.X.G.; Litz, F.H.; Fagundes, N.S.; Fernandes, E.; Mendonoca, G.A. Effects of sorghum on broilers gastrointestinal tract. Braz. J. Poult. Sci. 2015, 17, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Dousa, B.M.; Abdel, K.H.A. Effect of substituting yellow maize for sorghum on broiler performance. J. Worlds Poult. 2013, 3, 13–17. [Google Scholar]
- Al-Mashhadani, H.A.; Al-Rubaie, N.S. Effect of partial and total replacement of raw and germinated red sorghum instead of yellow corn in the diets on growth performance of broilers. IOP Conf. Ser. Earth Environ. Sci. 2021, 910, 1–7. [Google Scholar] [CrossRef]
- Manyelo, T.G.; Ngambi, J.W.; Norris, D.; Mabelebele, M. Substitution of Zea mays by Sorghum bicolor on performance and gut histo-morphology of Ross 308 chickens aged 1–42 d. J. Appl. Poult. Res. 2019, 28, 647–657. [Google Scholar] [CrossRef]
- Ibe, E.A.; Makinde, O.J. Growth performance, carcass characteristics and organs weight of broiler chickens fed graded levels of white guinea corn (Sorghum Bicolor, Linn.) as a replacement for dietary. J. Anim. Sci. Adv. 2014, 4, 1140–1146. [Google Scholar]
- Attia, Y.A.; Al-Harthi, M.A.; Abo-El-Maaty, H.M. The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, anti-oxidant, and morphometric responses of broiler chicks. Front. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Abudabos, A.M.; Ali, M.H.; Ebeid, T.A. The effects of replacing corn with low-tannin sorghum in broiler’s diet on growth performance, nutrient digestibility, lipid peroxidation and gene expressions related to growth and anti-oxidative properties. J. Appl. Anim. Res. 2019, 47, 532–539. [Google Scholar] [CrossRef]
- Marcinčák, S.; Klempová, T.; Bartkovský, M.; Marcinčáková, D.; Zdolec, N.; Popelka, P.; Mačanga, J.; Čertík, M. Effect of fungal solid-state fermented product in broiler chicken nutrition on quality and safety of produced breast meat. BioMed Res. Int. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Kim, C.H.; Kang, H.K. Effects of fermented barley or wheat as feed supplement on growth performance, gut health and meat quality of broilers. Eur. Poult. Sci. 2016, 80, 162. [Google Scholar]
- Feyera, M. Overview of malting and fermentation role in sorghum flour, primarily for anti-nutrient reduction. J. Hum. Nutr. Food Sci. 2021, 9, 1–9. [Google Scholar]
- Sonia, S.; Witjaksono, F.; Ridwan, R. Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pac. J. Clin. Nutr. 2015, 24, 620–625. [Google Scholar]
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W. Nutritional value and content of mineral elements in the meat of broiler chickens fed Boswellia serrata supplemented diets. J. Elem. 2017, 22, 1027–1037. [Google Scholar]
- Zhang, Z.; Pan, T.; Sun, Y. Dietary calcium supplementation promotes the accumulation of intramuscular fat. J. Animal Sci. Biotechnol. 2021, 12, 1–15. [Google Scholar]
- Mohammed, Z.S.; Mabudi, A.H.; Murtala, Y.S.; Jibrin, S.; Sulaiman, S.; Salihu, J. Nutritional analysis of three commonly consumed varieties of sorghum (Sorghum bicolor L.) in Bauchi State, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 1329–1334. [Google Scholar] [CrossRef]
Experimental Diets | |||
---|---|---|---|
Ingredients | Control | MSBD | MBBD |
Grower | |||
Soya oil cake | 104.7 | 104.70 | 104.70 |
Full fat soya | 180.00 | 180.00 | 180.00 |
Malted sorghum grains | 0.00 | 642.70 | 642.70 |
Maize grains | 642.70 | 0.00 | 0.00 |
* Amino acids and mineral premix | 39.30 | 39.30 | 39.30 |
Total | 1000.00 | 1000.00 | 1000.00 |
Finisher | |||
Soya oil cake | 145.60 | 145.60 | 145.60 |
Full fat soya | 90.40 | 90.40 | 90.40 |
Malted sorghum grains | 0.00 | 730.02 | 730.20 |
Maize grains | 730.20 | 0.00 | 0.00 |
Amino acids and mineral premix | 33.80 | 33.80 | 33.80 |
Total | 1000.00 | 1000.00 | 1000.00 |
1 Experimental Diets | |||
---|---|---|---|
Nutrient | Control | MWSBD | MRSBD |
Grower | |||
Dry matter | 93.81 | 93.61 | 93.41 |
Ash | 7.94 | 7.17 | 9.92 |
Organic matter | 92.06 | 92.83 | 91.08 |
Crude protein | 22.79 | 22.40 | 23.02 |
Energy (MJ/Kg) | 18.11 | 18.33 | 18.32 |
Crude fat | 7.52 | 8.78 | 7.79 |
Crude fibre | 13.31 | 13.23 | 14.36 |
Condensed Tannin | 0.045 | 0.056 | 0.057 |
Finisher | |||
Dry matter | 93.47 | 92.81 | 93.20 |
Ash | 6.96 | 9.68 | 8.46 |
Organic matter | 93.04 | 90.32 | 91.54 |
Crude protein | 21.49 | 21.62 | 22.11 |
Energy (MJ/Kg) | 18.50 | 18.45 | 18.58 |
Crude fat | 7.85 | 8.06 | 7.35 |
Crude fibre | 13.62 | 13.74 | 14.87 |
Condensed Tannin | 0.049 | 0.053 | 0.071 |
1 Experimental Diets | ||||
---|---|---|---|---|
Parameters | Control | MWSBD | MRSBD | p-Value |
Slaughter weight (g) | 2212.4 ± 33.1 a | 2101.4 ± 33.5 b | 1933.8 ± 33.5 c | 0.0001 |
Hot carcass weight (g) | 1719.5 ± 26.5 a | 1594.5 ± 26.8 b | 1450.5 ± 26.8 c | 0.0001 |
Cold carcass weight (g) | 1694.1 ± 26.5 a | 1570.8 ± 26.8 b | 1421.6 ± 26.8 c | 0.0001 |
Hot carcass yield (%) | 76.2 ± 0.7 a | 74.1 ± 0.7 b | 73.3 ± 0.7 bc | 0.02 |
Dressing percentage (%) | 75.4 ± 0.7 a | 73.4 ± 0.7 b | 72.26 ± 0.7 bc | 0.008 |
Wing weight (%) | 5.5 ± 0.09 c | 5.7 ± 0.09 ab | 5.8 ± 0.09 a | 0.10 |
Breast weight (%) | 33.5 ± 0.7 a | 31.1 ± 0.7 b | 31.8 ± 0.7 ab | 0.03 |
Breast weight ratio | 33.5 ± 1.0 a | 31.1 ± 1.0 b | 31.8 ± 1.0 ab | 0.03 |
Thigh–drumstick weight (%) | 13.7 ± 0.2 b | 14.7 ± 0.2 a | 14.7 ± 0.2 a | 0.06 |
Thigh–drumstick weight ratio | 13.7 ± 0.34 b | 14.7 ± 0.3 a | 14.7 ± 0.3 a | 0.06 |
Vertebrae (back) weight (%) | 9.6 ± 0.3 b | 10.8 ± 0.3 a | 10.6 ± 0.3 ab | 0.08 |
pHi | 5.8 ± 0.1 a | 5.9 ± 0.1 a | 5.6 ± 0.05 b | 0.0002 |
pHu | 5.5 ± 0.04 | 5.5 ± 0.04 | 5.6 ± 0.04 | 0.40 |
1 Experimental Diets | |||||
---|---|---|---|---|---|
Parameters | Control | MWSBD | MRSBD | 2 SEM | p-Value |
Large intestine length (mm) | 80.5 b | 82.9 ab | 91.5 a | 2.64 | 0.02 |
Small intestine length (mm) | 1585.0 | 1181.6 | 1670.8 | 46.9 | 0.60 |
Caeca (mm) | 263.0 | 176.4 | 165.2 | 38.0 | 0.41 |
Liver | 2.1 b | 2.2 a | 2.2 a | 0.03 | 0.05 |
Gizzard | 1.5 c | 1.7 b | 1.9 a | 0.03 | 0.0001 |
Heart | 0.5 b | 0.6 b | 0.6 a | 0.02 | 0.01 |
1 Experimental Diets | |||||
---|---|---|---|---|---|
Parameters | Control | MWSBD | MRSBD | 2 SEM | p-Value |
Dry matter | 97.8 | 98.3 | 97.4 | 0.5 | 0.28 |
Ash | 7.2 | 6.9 | 7.3 | 0.9 | 0.66 |
Organic matter | 92.8 | 93.1 | 92.3 | 0.9 | 0.66 |
Energy (MJ/Kg) | 22.4 | 22.4 | 22.3 | 0.1 | 0.78 |
Crude fat | 3.6 a | 2.8 ab | 1.8 b | 0.3 | 0.0001 |
Crude fibre | 6.9 | 7.1 | 7.3 | 0.7 | 0.92 |
Crude protein | 21.6 | 23.2 | 23.4 | 0.9 | 0.38 |
1 Experimental Diets | |||||
---|---|---|---|---|---|
Parameters | Control | MWSBD | MRSBD | 2 SEM | p-Value |
Phosphorus | 37.6 a | 36.1 ab | 34.2 b | 0.84 | 0.04 |
Calcium | 834.9 a | 723.2 b | 832.8 a | 31.6 | 0.04 |
Sodium | 923.4 c | 1333.0 b | 1591.7 a | 69.5 | 0.0001 |
Potassium | 4357.1 b | 6372.7 a | 6588.1 a | 138.7 | 0.0001 |
Magnesium | 273.1 c | 421.3 a | 374.9 ab | 26.7 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moses, C.; Manyeula, F.; Radikara, M.V.; Mareko, M.H.D.; Madibela, O.R. Carcass Characteristics and Meat Quality of Ross 308 Broiler Chickens Fed Malted Red and White Sorghum-Based Diets. Poultry 2022, 1, 169-179. https://doi.org/10.3390/poultry1030015
Moses C, Manyeula F, Radikara MV, Mareko MHD, Madibela OR. Carcass Characteristics and Meat Quality of Ross 308 Broiler Chickens Fed Malted Red and White Sorghum-Based Diets. Poultry. 2022; 1(3):169-179. https://doi.org/10.3390/poultry1030015
Chicago/Turabian StyleMoses, Chandapiwa, Freddy Manyeula, Malebogo Virginia Radikara, Molebeledi Horatious Dambe Mareko, and Othusitse Ricky Madibela. 2022. "Carcass Characteristics and Meat Quality of Ross 308 Broiler Chickens Fed Malted Red and White Sorghum-Based Diets" Poultry 1, no. 3: 169-179. https://doi.org/10.3390/poultry1030015
APA StyleMoses, C., Manyeula, F., Radikara, M. V., Mareko, M. H. D., & Madibela, O. R. (2022). Carcass Characteristics and Meat Quality of Ross 308 Broiler Chickens Fed Malted Red and White Sorghum-Based Diets. Poultry, 1(3), 169-179. https://doi.org/10.3390/poultry1030015