Qutrit-Based Orthogonal Approximations with Inverse-Free Quantum Gate Sets †
Abstract
:1. Introduction
2. Basic Definitions and Theorems
3. Results
3.1. Universal Sets in and
3.2. Modified Shrinking Lemma
3.3. Inverse-Free Orthogonal Approximations
Algorithm 1 Inverse-free Solovay–Kitaev algorithm in |
|
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klimov, A.; Guzmán, R.; Retamal, J.; Saavedra, C. Qutrit quantum computer with trapped ions. Phys. Rev. A 2003, 67, 062313. [Google Scholar] [CrossRef]
- Blok, M.S.; Ramasesh, V.V.; Schuster, T.; O’Brien, K.; Kreikebaum, J.M.; Dahlen, D.; Morvan, A.; Yoshida, B.; Yao, N.Y.; Siddiqi, I. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X 2021, 11, 021010. [Google Scholar] [CrossRef]
- Mc Hugh, D.; Twamley, J. Trapped-ion qutrit spin molecule quantum computer. New J. Phys. 2005, 7, 174. [Google Scholar] [CrossRef] [Green Version]
- Gröblacher, S.; Jennewein, T.; Vaziri, A.; Weihs, G.; Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 2006, 8, 75. [Google Scholar] [CrossRef]
- Kaszlikowski, D.; Oi, D.K.; Christandl, M.; Chang, K.; Ekert, A.; Kwek, L.C.; Oh, C. Quantum cryptography based on qutrit Bell inequalities. Phys. Rev. A 2003, 67, 012310. [Google Scholar] [CrossRef] [Green Version]
- Mahasinghe, A.; Hua, R.; Dinneen, M.J.; Goyal, R. Solving the Hamiltonian cycle problem using a quantum computer. In Proceedings of the Australasian Computer Science Week Multiconference, Sydney, Australia, 29–31 January 2019; pp. 1–9. [Google Scholar]
- Mahasinghe, A.; Bandaranayake, S.; De Silva, K. Solovay–Kitaev Approximations of Special Orthogonal Matrices. Adv. Math. Phys. 2020, 2020, 2530609. [Google Scholar] [CrossRef]
- Aliferis, P.; Gottesman, D.; Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. arXiv 2005, arXiv:quant-ph/0504218. [Google Scholar] [CrossRef]
- Solovay, R. Proof of Solovay–Kitaev Theorem; University of California at Berkeley: Berkeley, CA, USA, 1995; Unpublished. [Google Scholar]
- Kitaev, A.Y. Quantum computations: Algorithms and error correction. Uspekhi Mat. Nauk. 1997, 52, 53–112. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Fouché, W.L. An Algorithmic Construction of Quantum Circuits of High Descriptive Complexity. Electron. Notes Theor. Comput. Sci. 2008, 221, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Bouland, A.; Fitzsimons, J.F.; Koh, D.E. Complexity Classification of Conjugated Clifford Circuits. In Proceedings of the 33rd Computational Complexity Conference, San Diego, CA, USA, 22–24 June 2018. [Google Scholar]
- Bouland, A.; Mancinska, L.; Zhang, X. Complexity classification of two-qubit commuting hamiltonians. In Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Tokyo, Japan, 29 May–1 June 2016. [Google Scholar]
- Bouland, A.; Ozols, M. Trading Inverses for an Irrep in the Solovay-Kitaev Theorem. In Proceedings of the 13th Conference on the Theory of Quantum Computation, Communication and Cryptography, Sydney, Australia, 16–18 July 2018. [Google Scholar]
- Bouland, A.; Giurgica-Tiron, T. Efficient Universal Quantum Compilation: An Inverse-free Solovay-Kitaev Algorithm. arXiv 2021, arXiv:2112.02040. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahasinghe, A.; Fernando, D.; De Silva, K. Qutrit-Based Orthogonal Approximations with Inverse-Free Quantum Gate Sets. Comput. Sci. Math. Forum 2023, 7, 12. https://doi.org/10.3390/IOCMA2023-14416
Mahasinghe A, Fernando D, De Silva K. Qutrit-Based Orthogonal Approximations with Inverse-Free Quantum Gate Sets. Computer Sciences & Mathematics Forum. 2023; 7(1):12. https://doi.org/10.3390/IOCMA2023-14416
Chicago/Turabian StyleMahasinghe, Anuradha, Dulmi Fernando, and Kaushika De Silva. 2023. "Qutrit-Based Orthogonal Approximations with Inverse-Free Quantum Gate Sets" Computer Sciences & Mathematics Forum 7, no. 1: 12. https://doi.org/10.3390/IOCMA2023-14416
APA StyleMahasinghe, A., Fernando, D., & De Silva, K. (2023). Qutrit-Based Orthogonal Approximations with Inverse-Free Quantum Gate Sets. Computer Sciences & Mathematics Forum, 7(1), 12. https://doi.org/10.3390/IOCMA2023-14416