Tame Topology †
Abstract
:1. Introduction
1.1. Grothendieck’s Programme and Basics of Tame Topology
- (LS1)
- ,
- (LS2)
- if , then ,
- (LS3)
- (i.e., ).
1.2. Genealogy and Implicit Use of Tame Spaces
1.3. Categories of Tame Spaces
- (a)
- bounded if refines : each admits such that ,
- (b)
- continuous if (i.e., ),
- (c)
- strongly continuous if ,
- (d)
- a strict homeomorphism if f is a bijection and .
- (a)
- the category of locally small spaces and their bounded continuous mappings,
- (b)
- the full subcategory of locally small spaces,
- (c)
- the full subcategory of small spaces.
- (d)
- the subcategory in of (bounded) strongly continuous mappings.
- 1.
- for ,
- 2.
- for .
1.4. Stone and Esakia Dualities
2. Results
2.1. Categories of Distributive Lattices
- (1)
- ,
- (2)
- where ,
- (3)
- .
- (a)
- satisfies the condition of domination
- (b)
- respects the decent lump: .
- (1)
- pairs where L is a distributive lattice with zero and is a distinguished decent set of prime filters in as objects,
- (2)
- homomorphisms of lattices with zeros respecting the decent sets of prime filters and satisfying the condition of domination as morphisms.
2.2. Categories of Spectral-Like Spaces
- (1)
- ,
- (2)
- is an isomorphism of lattices,
- (3)
- .
- (a)
- satisfies the condition of boundedness
- (b)
- respects the decent lump: .
- (1)
- pairs , where is an up-spectral space and is a distinguished decent subset of X as objects;
- (2)
- bounded strongly continuous mappings respecting the decent subsets as morphisms.
2.3. Main Equivalences
- 1.
- The categories , and are equivalent.
- 2.
- The categories , and are equivalent.
- 3.
- The categories and are equivalent.
- 4.
- The categories and are dually equivalent.
- 5.
- The categories , and are equivalent.
- 6.
- The categories , and are equivalent.
2.4. The Spectralification Method and Consequences
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grothendieck, A. Esquisse d’un Programme [Sketch of a Program]. In Geometric Galois Actions 1; Cambridge University Press: Cambridge, UK, 1997; pp. 5–48, (In French, with an English translation on pp. 243–283). [Google Scholar]
- Cruz Morales, J.A. The Notion of Space in Grothendieck. In Handbook of the History and Philosophy of Mathematical Practice; Springer Nature: Cham, Switzerland, 2020; pp. 1–21. [Google Scholar]
- A’Campo, N.; Ji, L.; Papadopoulos, A. On Grothendieck’s tame topology. In Handbook of Teichmüller Theory, Volume VI; EMS Press: Berlin, Germany, 2016; Volume 27, pp. 52–533. [Google Scholar]
- van den Dries, L. Tame Topology and O-Minimal Structures; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Piękosz, A. Locally small spaces with an application. Acta Math. Hung. 2020, 160, 197–216. [Google Scholar] [CrossRef]
- Piękosz, A. Stone Duality for Kolmogorov Locally Small Spaces. Symmetry 2021, 13, 1791. [Google Scholar] [CrossRef]
- Piękosz, A. Esakia Duality for Heyting Small Spaces. Symmetry 2022, 14, 2567. [Google Scholar] [CrossRef]
- Piękosz, A. On generalized topological spaces I. Ann. Pol. Math. 2013, 107, 217–241. [Google Scholar] [CrossRef]
- Piękosz, A. On generalized topological spaces II. Ann. Pol. Math. 2013, 108, 185–214. [Google Scholar] [CrossRef]
- Piękosz, A.; Wajch, E. Compactness and compactifications in generalized topology. Topol. Appl. 2015, 194, 241–268. [Google Scholar] [CrossRef]
- Bochnak, J.; Coste, M.; Roy, M.-F. Real Algebraic Geometry; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Andradas, C.; Bröcker, L.; Ruiz, J. Constructible Sets in Real Geometry; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Piękosz, A. O-minimal homotopy and generalized (co)homology. Rocky Mt. J. Math. 2013, 43, 573–617. [Google Scholar] [CrossRef]
- Delfs, H.; Knebusch, M. Locally Semialgebraic Spaces; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Bosch, S.; Güntzer, U.; Remmert, R. Non-Archimedean Analysis; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Dinis, B.; Edmundo, M.J.; Mamino, M. Fundamental group in o-minimal structures with definable Skolem functions. Ann. Pure Appl. Log. 2021, 172, 102975. [Google Scholar] [CrossRef]
- Pillay, A. On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra 1988, 53, 239–255. [Google Scholar] [CrossRef]
- Lugojan, S. Generalized topology. Stud. Cercet. Mat. 1982, 34, 348–360. [Google Scholar]
- Császár, Á. Generalized topology, generalized continuity. Acta Math. Hung. 2002, 96, 351–357. [Google Scholar] [CrossRef]
- Dickmann, M.; Schwartz, N.; Tressl, M. Spectral Spaces; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Stone, M.H. The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 1936, 40, 37–111. [Google Scholar]
- Stone, M.H. Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 1937, 41, 375–481. [Google Scholar] [CrossRef]
- Stone, M.H. Topological representations of distributive lattices and Brouwerian logics. Časopis Pěst. Mat. Fiz. 1938, 67, 1–25. [Google Scholar] [CrossRef]
- Erné, M. General Stone duality. Topol. Appl. 2004, 137, 125–158. [Google Scholar] [CrossRef]
- Hartonas, C. Stone duality for lattice expansions. Log. J. IGPL 2018, 26, 475–504. [Google Scholar] [CrossRef]
- Priestley, H. Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 1970, 2, 186–190. [Google Scholar] [CrossRef]
- Priestley, H. Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 1972, 24, 507–530. [Google Scholar] [CrossRef]
- Esakia, L. Heyting Algebras. Duality Theory; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Celani, S.A.; Jansana, R. Esakia Duality and Its Extensions. In Leo Esakia on Duality in Modal and Intuitionistic Logics; Springer: Dordrecht, The Netherland, 2014; pp. 63–98. [Google Scholar]
- Prestel, A.; Delzell, C.N. Positive Polynomials; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Hochster, M. Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 1969, 142, 43–60. [Google Scholar] [CrossRef]
- Hartshorne, R. Algebraic Geometry; Springer: New York, NY, USA, 1977. [Google Scholar]
- Marker, D. Model Theory: An Introduction; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tent, K.; Ziegler, M. A Course in Model Theory; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Edmundo, M.J.; Prelli, L. The six Grothendieck operations on o-minimal sheaves. Math. Z. 2020, 294, 109–160. [Google Scholar] [CrossRef]
- Bice, T.; Starling, C. Locally Compact Stone Duality. J. Log. Anal. 2018, 10, 1–36. [Google Scholar] [CrossRef]
- Bice, T.; Starling, C. General non-commutative locally compact locally Hausdorff Stone duality. Adv. Math. 2019, 341, 40–91. [Google Scholar] [CrossRef]
- Bezhanishvili, G.; Morandi, P.J.; Olberding, B. A generalization of Gelfand-Naimark-Stone duality to completely regular spaces. Topol. Appl. 2020, 274, 107123. [Google Scholar] [CrossRef]
- Bezhanishvili, G.; Morandi, P.J.; Olberding, B. Gelfand-Naimark-Stone duality for normal spaces and insertion theorems. Topol. Appl. 2020, 280, 107256. [Google Scholar] [CrossRef]
- Dimov, G.; Ivanova-Dimova, E. Two Extensions of the Stone Duality to the Category of Zero-Dimensional Hausdorff Spaces. Filomat 2021, 35, 1851–1878. [Google Scholar] [CrossRef]
- Cannon, S.; Döring, A. A Generalisation of Stone Duality to Orthomodular Lattices. In Reality and Measurement in Algebraic Quantum Theory; Springer Nature: Singapore, 2018; pp. 3–65. [Google Scholar]
- Hartonas, C. Duality Results for (Co)Residuated Lattices. Log. Universalis 2019, 13, 77–99. [Google Scholar] [CrossRef]
- Kudryavtseva, G. A refinement of Stone duality to skew Boolean algebras. Algebra Universalis 2012, 67, 397–416. [Google Scholar] [CrossRef]
- Bezhanishvili, G.; Jansana, R. Esakia Style Duality for Implicative Semilattices. Appl. Categor. Struct. 2013, 21, 181–208. [Google Scholar] [CrossRef]
- Goldblatt, R. Canonical extensions and ultraproducts of polarities. Algebra Universalis 2018, 79, 80. [Google Scholar] [CrossRef]
- Hartonas, C. Canonical Extensions and Kripke-Galois Semantics for Non-distributive Logics. Log. Universalis 2018, 12, 397–422. [Google Scholar] [CrossRef]
- Kwaśniewski, B.K.; Meyer, R. Stone duality and quasi-orbit spaces for generalised C*-inclusions. Proc. Lond. Math. Soc. 2020, 121, 788–827. [Google Scholar] [CrossRef]
- Piękosz, A. Hofmann-Lawson Duality for Locally Small Spaces. arXiv 2016, arXiv:2009.02966. [Google Scholar]
- Engelking, R. General Topology; Heldermann: Berlin, Germany, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piękosz, A. Tame Topology. Comput. Sci. Math. Forum 2023, 7, 21. https://doi.org/10.3390/IOCMA2023-14427
Piękosz A. Tame Topology. Computer Sciences & Mathematics Forum. 2023; 7(1):21. https://doi.org/10.3390/IOCMA2023-14427
Chicago/Turabian StylePiękosz, Artur. 2023. "Tame Topology" Computer Sciences & Mathematics Forum 7, no. 1: 21. https://doi.org/10.3390/IOCMA2023-14427
APA StylePiękosz, A. (2023). Tame Topology. Computer Sciences & Mathematics Forum, 7(1), 21. https://doi.org/10.3390/IOCMA2023-14427