The Burr XII Autoregressive Moving Average Model †
Abstract
:1. Introduction
2. The Burr XII ARMA Model
3. Parameter Estimation
4. Numerical Results
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Bhatti, F.A.; Hamedani, G.G.; Korkmaz, M.Ç.; Sheng, W.; Ali, A. On the Burr XII-moment exponential distribution. PLoS ONE 2021, 16, e0246935. [Google Scholar] [CrossRef] [PubMed]
- Guerra, R.R.; Peña-Ramírez, F.A.; Cordeiro, G.M. The Weibull Burr XII distribution in lifetime and income analysis. An. Acad. Bras. Ciências 2021, 93, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Dhongde, S.; Minoiu, C. Global poverty estimates: A sensitivity analysis. World Dev. 2013, 44, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.S. Empirical likelihood-based inference for poverty measures with relative poverty lines. Econom. Rev. 2013, 32, 513–523. [Google Scholar] [CrossRef]
- Ribeiro, T.F.; Peña-Ramírez, F.A.; Guerra, R.R.; Cordeiro, G.M. Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses. PLoS ONE 2022, 17, e0276695. [Google Scholar] [CrossRef]
- Low, V.J.M.; Khoo, H.L.; Khoo, W.C. Statistical modelling of bus travel time with Burr distribution. Itm Web Conf. 2021, 36, 1–15. [Google Scholar] [CrossRef]
- Ramires, T.G.; Nakamura, L.R.; Righetto, A.J.; Carvalho, R.J.; Vieira, L.A.; Pereira, C.A. Comparison between Highly Complex Location Models and GAMLSS. Entropy 2021, 23, 469. [Google Scholar] [CrossRef]
- Singh, S.K.; Maddala, G.S. A function for the size distribution of incomes. Econometrica 1976, 44, 963–970. [Google Scholar] [CrossRef]
- Tadikamalla, P.R. A Look at the Burr and Related Distribution. Int. Stat. Rev. Int. Stat. 1980, 48, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, W.J.; Keats, J.B.; Wang, F.K. The Burr XII distribution in reliability analysis. J. Qual. Technol. 1998, 30, 386–394. [Google Scholar] [CrossRef]
- Watkins, A. A note on expected Fisher information for the Burr XII distribution. Microelectron. Reliab. 1997, 37, 1849–1852. [Google Scholar] [CrossRef]
- Muse, A.H.; Mwalili, S.; Ngesa, O.; Almalki, S.J.; Abd-Elmougod, G.A. Bayesian and classical inference for the generalized log-logistic distribution with applications to survival data. Comput. Intell. Neurosci. 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Ribeiro, T.F.; Cordeiro, G.M.; Peña-Ramírez, F.A.; Guerra, R.R. A new quantile regression for the COVID-19 mortality rates in the United States. Comput. Appl. Math. 2021, 40, 1–16. [Google Scholar] [CrossRef]
- Sagrillo, M.; Guerra, R.R.; Machado, R.; Bayer, F.M. A generalized control chart for anomaly detection in SAR imagery. Comput. Ind. Eng. 2023, 177, 109030. [Google Scholar] [CrossRef]
- Benjamin, M.A.; Rigby, R.A.; Stasinopoulos, D.M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 2003, 98, 214–223. [Google Scholar] [CrossRef]
- Bayer, F.M.; Bayer, D.M.; Marinoni, A.; Gamba, P. A Novel Rayleigh Dynamical Model for Remote Sensing Data Interpretation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4989–4999. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Scher, V.T.; Bayer, F.M. Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy. Int. J. Forecast. 2023, 39, 98–109. [Google Scholar] [CrossRef]
- Melchior, C.; Zanini, R.R.; Guerra, R.R.; Rockenbach, D.A. Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches. Int. J. Forecast. 2021, 37, 825–837. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, S. Recurrent neural network-adapted nonlinear ARMA-GARCH model with application to S&P 500 index data. Korean Data Inf. Sci. Soc. 2019, 30, 1187–1195. [Google Scholar]
- Korbi, A.; Lleshaj, L. Finance leasing and arma forecasting: Evidence from albania. Eur. J. Bus. Manag. Res. 2020, 5, 1–6. [Google Scholar] [CrossRef]
- Koh, W.S.; Heng, H.S.; Wong, C.Z.; Lai, P.L.; Dass, C. Forecasting Stock Price using ARMA Model. INTI J. 2020, 2020, 1–8. [Google Scholar]
- Shah, H.; Bhatt, V.; Shah, J. A Neoteric Technique Using ARIMA-LSTM for Time Series Analysis on Stock Market Forecasting. In Proceedings of the Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy: Proceedings of the Second International Conference, MMCITRE 2021, Gandhinagar, India, 6–8 February 2021; Springer: Singapore, 2022; pp. 381–392. [Google Scholar]
- Lee, C.; Park, K.K.H. Forecasting trading volume in local housing markets through a time-series model and a deep learning algorithm. Eng. Constr. Archit. Manag. 2022, 29, 165–178. [Google Scholar] [CrossRef]
- Araújo, F.J.M.; Guerra, R.R.; Peña-Ramírez, F.A. The Burr XII quantile regression for salary-performance models with applications in the sports economy. Comput. Appl. Math. 2022, in press. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Time Series Analysis Forecasting and Control; Department of Statistics, University of Wisconsin Madison: Madison, WI, USA, 1970; pp. 1–574. [Google Scholar]
- Prass, T.S.; Carlos, J.H.; Taufemback, C.G.; Pumi, G. Positive Time Series Regression Models. arXiv 2022, arXiv:2201.03667. [Google Scholar]
ARMA(1,4) | GARMA(1,4) | ||||||
---|---|---|---|---|---|---|---|
Coef. | Estimate | SE | p-Value | Coef. | Estimate | SE | p-Value |
Int. | 0.3558 | 0.0189 | 0.0000 | 0.1188 | 0.0000 | ||
2.4091 | 0.9161 | 0.0971 | 0.7730 | ||||
0.8051 | 2.4058 | 0.7379 | 1.4578 | 0.1434 | 0.0000 | ||
0.5003 | 1.3250 | 0.7057 | 1.0380 | 0.2281 | 0.0000 | ||
0.4213 | 0.8648 | 0.6261 | 1.0413 | 0.1716 | 0.0000 | ||
0.0881 | 0.7846 | 0.9106 | 0.1746 | 0.9640 | |||
_ | _ | _ | _ | 11.5539 | 1.0861 | 0.0000 | |
RARMA(1,4) | BXII-ARMA(1,4) | ||||||
Coef. | Estimate | SE | p-Value | Coef. | Estimate | SE | p-Value |
0.1799 | 0.0000 | 0.0880 | 0.0000 | ||||
0.3683 | 0.5293 | 0.4866 | 0.3398 | 0.0663 | 0.0000 | ||
1.2574 | 0.3980 | 0.0016 | 0.3705 | 0.0541 | 0.0000 | ||
1.0528 | 0.4046 | 0.0093 | 0.2454 | 0.0651 | 0.0002 | ||
1.1475 | 0.3057 | 0.0002 | 0.2801 | 0.0611 | 0.0000 | ||
0.3283 | 0.9549 | 0.2361 | 0.0626 | 0.0002 | |||
_ | _ | _ | _ | c | 3.7013 | 0.1806 | 0.0000 |
Model | MSE | MAPE | MASE |
---|---|---|---|
ARMA | 0.0555 | 0.4233 | 0.8224 |
GARMA | 0.0567 | 0.4129 | 0.8215 |
RARMA | 0.0676 | 0.3834 | 0.8679 |
BXII-ARMA | 0.0071 | 0.1491 | 0.3020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, F.J.M.; Guerra, R.R.; Peña-Ramírez, F.A. The Burr XII Autoregressive Moving Average Model. Comput. Sci. Math. Forum 2023, 7, 46. https://doi.org/10.3390/IOCMA2023-14403
de Araújo FJM, Guerra RR, Peña-Ramírez FA. The Burr XII Autoregressive Moving Average Model. Computer Sciences & Mathematics Forum. 2023; 7(1):46. https://doi.org/10.3390/IOCMA2023-14403
Chicago/Turabian Stylede Araújo, Fernando José Monteiro, Renata Rojas Guerra, and Fernando Arturo Peña-Ramírez. 2023. "The Burr XII Autoregressive Moving Average Model" Computer Sciences & Mathematics Forum 7, no. 1: 46. https://doi.org/10.3390/IOCMA2023-14403
APA Stylede Araújo, F. J. M., Guerra, R. R., & Peña-Ramírez, F. A. (2023). The Burr XII Autoregressive Moving Average Model. Computer Sciences & Mathematics Forum, 7(1), 46. https://doi.org/10.3390/IOCMA2023-14403