An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems †
Abstract
:1. Introduction
2. Methodology
2.1. Convergence of Third-Refinement of Gauss–Seidel (TRGS)
2.2. Algorithm for Third Refinement of Gauss–Seidel (TRGS) Technique
- (i)
- Input the coefficients of , indicate a preliminary estimation , maximum iteration quantity tolerance .
- (ii)
- Obtain the partition matrices and from .
- (iii)
- Create inverse of and obtain .
- (iv)
- Create .
- (v)
- Establish .
- (vi)
- Iterate and stop if .
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Audu, K.J. Extended accelerated overrelaxation iteration techniques in solving heat distribution problems. Songklanakarin J. Sci. Technol. 2022, 44, 1232–1237. [Google Scholar]
- Audu, K.J.; Yahaya, Y.A.; Adeboye, K.R.; Abubakar, U.Y. Convergence of Triple Accelerated Over-Relaxation (TAOR) Method for M-Matrix Linear Systems. Iran. J. Optim. 2021, 13, 93–101. [Google Scholar]
- Vatti, V.B.K. Numerical Analysis Iterative Methods; I.K International Publishing House: New Delhi, India, 2016. [Google Scholar]
- Vatti, V.B.K.; Tesfaye, E.K. A refinement of Gauss-Seidel method for solving of linear system of equations. Int. J. Contemp. Math. Sci. 2011, 63, 117–127. [Google Scholar]
- Tesfaye, E.K.; Awgichew, G.; Haile, E.; Gashaye, D.A. Second refinement of Gauss-Seidel iteration method for solving linear system of equations. Ethiop. J. Sci. Technol. 2020, 13, 1–15. [Google Scholar]
- Tesfaye, E.K.; Awgichew, G.; Haile, E.; Gashaye, D.A. Second refinement of Jacobi iterative method for solving linear system of equations. Int. J. Comput. Sci. Appl. Math. 2019, 5, 41–47. [Google Scholar]
- Kumar, V.B.; Vatti; Shouri, D. Parametric preconditioned Gauss-Seidel iterative method. Int. J. Curr. Res. 2016, 8, 37905–37910. [Google Scholar]
- Saha, M.; Chakrabarty, J. Convergence of Jacobi, Gauss-Seidel and SOR methods for linear systems. Int. J. Appl. Contemp. Math. Sci. 2020, 6, 77. [Google Scholar] [CrossRef]
- Genanew, G.G. Refined iterative method for solving system of linear equations. Am. J. Comput. Appl. Math. 2016, 6, 144–147. [Google Scholar]
- Quateroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Constantlnescu, R.; Poenaru, R.C.; Popescu, P.G. A new version of KSOR method with lower number of iterations and lower spectral radius. Soft Comput. 2019, 23, 11729–11736. [Google Scholar] [CrossRef]
- Muhammad, S.R.B.; Zubair, A.K.; Mir Sarfraz, K.; Adul, W.S. A new improved Classical Iterative Algorithm for Solving System of Linear Equations. Proc. Pak. Acad. Sci. 2021, 58, 69–81. [Google Scholar]
- Lasker, A.H.; Behera, S. Refinement of iterative methods for the solution of system of linear equations Ax=b. ISOR-J. Math. 2014, 10, 70–73. [Google Scholar] [CrossRef]
- Meligy, S.A.; Youssef, I.K. Relaxation parameters and composite refinement techniques. Results Appl. Math. J. 2022, 15, 100282. [Google Scholar] [CrossRef]
Technique | Iteration Step | Spectral Radius | Execution Time (s) | Convergence Rate |
---|---|---|---|---|
GS | 88 | 0.89530 | 6.70 | 0.04803 |
RGS | 44 | 0.80157 | 5.53 | 0.09606 |
SRGS | 30 | 0.71765 | 5.00 | 0.14408 |
TRGS | 22 | 0.64251 | 4.10 | 0.19212 |
Technique | |||||||||
---|---|---|---|---|---|---|---|---|---|
GS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1.47620 | 1.63720 | −1.44920 | 0.04476 | 1.14180 | 0.91970 | −1.95840 | 0.79746 | |
2 | 0.86540 | 1.96410 | −1.02590 | −0.02391 | 0.94982 | 0.90209 | −2.07580 | 0.94392 | |
87 | 0.99999 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 | |
88 | 1.00000 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 | |
RGS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.86540 | 1.96410 | −1.02590 | −0.23917 | 0.949820 | 0.90209 | −2.07580 | 0.94392 | |
2 | 0.94909 | 1.94710 | −1.05170 | −0.04878 | 0.95370 | 0.95407 | −2.04670 | 0.95306 | |
43 | 0.99999 | 2.00000 | −1.00000 | 0.00000 | 0.99999 | 0.99999 | −2.00000 | 0.99999 | |
44 | 1.00000 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 | |
SRGS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.95672 | 1.95870 | −1.05540 | −0.06439 | 0.94007 | 0.94674 | −2.04710 | 0.95308 | |
2 | 0.95952 | 1.96010 | −1.03950 | −0.03950 | 0.96145 | 0.96206 | −2.03740 | 0.96315 | |
29 | 0.99999 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 | |
30 | 1.00000 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 | |
TRGS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.94909 | 1.94710 | −1.05170 | −0.04878 | 0.95370 | 0.95407 | −2.04670 | 0.95306 | |
2 | 0.96741 | 1.96790 | −1.03170 | −0.03170 | 0.96917 | 0.96959 | −2.03000 | 0.97042 | |
21 | 0.99999 | 2.00000 | −1.00000 | 0.00000 | 0.99999 | 0.99999 | −2.00000 | 0.99999 | |
22 | 1.00000 | 2.00000 | −1.00000 | 0.00000 | 1.00000 | 1.00000 | −2.00000 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audu, K.J.; Essien, J.N. An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems. Comput. Sci. Math. Forum 2023, 7, 7. https://doi.org/10.3390/IOCMA2023-14415
Audu KJ, Essien JN. An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems. Computer Sciences & Mathematics Forum. 2023; 7(1):7. https://doi.org/10.3390/IOCMA2023-14415
Chicago/Turabian StyleAudu, Khadeejah James, and James Nkereuwem Essien. 2023. "An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems" Computer Sciences & Mathematics Forum 7, no. 1: 7. https://doi.org/10.3390/IOCMA2023-14415
APA StyleAudu, K. J., & Essien, J. N. (2023). An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems. Computer Sciences & Mathematics Forum, 7(1), 7. https://doi.org/10.3390/IOCMA2023-14415