Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Approaches
2.2. Study Area
2.3. Sampling and Classification
2.4. Seasonal Variations
2.5. Characterization
2.5.1. Moisture Content
- W1 = initial mass in kg
- W2 = final mass in kg of waste
- Mc = moisture content in wt.%.
2.5.2. Proximate and Ultimate Analysis
- HHV = higher heating value on a dry basis in MJ/kg
- C = carbon composition in%
- H = hydrogen composition in%
- O = oxygen composition in%.
- LHV = Low heating value in MJ/kg
- HHV = High heating value in MJ/kg
- H = hydrogen composition of the waste in % (dry basis)
- Mc = Moisture content of waste on as-received basis (%).
2.5.3. X-Ray Fluorescence
2.5.4. Fourier Transformed Infrared Spectroscopy
2.6. Statistical Analysis
3. Results and Discussion
3.1. Waste Classification
3.2. Effect of Seasonal Variations
3.3. Waste Characterization
3.3.1. Moisture Content Analysis
3.3.2. Proximate and Ultimate
3.3.3. X-Ray Fluorescence (XRF)
3.3.4. Fourier Transform Infrared (FTIR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OFMSW | Organic fraction of municipal solid waste |
HL | Hatherley landfill |
SSL | Soshanguve landfill |
MSW | Municipal solid waste |
wt.% | Moisture content |
Mc | Moisture content |
adb | Air-dry basis |
daf | Dry-ash free basis |
References
- Omotayo, A.O. Investigating the drivers of solid waste generation and disposal: Evidence from South Africa. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Ferdoush, M.R.; Aziz, R.A.; Karmaker, C.L.; Debnath, B.; Limon, M.H.; Bari, A.B.M.M. Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability. Innov. Green Dev. 2024, 3, 100121. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- StatsSA. Census 2022 Statistical Release; StatsSA: Pretoria, South Africa, 2023. [Google Scholar]
- Serge Kubanza, N.; Simatele, M.D. Sustainable solid waste management in developing countries: A study of institutional strengthening for solid waste management in Johannesburg, South Africa. J. Environ. Plan. Manag. 2020, 63, 175–188. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P. GHG emission and carbon sequestration potential from MSW of Indian metro cities. Urban Clim. 2014, 8, 30–41. [Google Scholar] [CrossRef]
- Pellera, F.-M.; Pasparakis, E.; Gidarakos, E. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors. Waste Manag. 2016, 56, 181–189. [Google Scholar] [CrossRef]
- Khan, M.A.; Hameed, B.H.; Siddiqui, M.R.; Alothman, Z.A.; Alsohaimi, I.H. Hydrothermal Conversion of Food Waste to Carbonaceous Solid Fuel-A Review of Recent Developments. Foods 2022, 11, 4036. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Z.; Chai, J. A Review of Characteristics of Landfilled Municipal Solid Waste in Several Countries: Physical Composition, Unit Weight, and Permeability Coefficient. Pol. J. Environ. Stud. 2018, 27, 2425–2435. [Google Scholar] [CrossRef]
- Mbazima, S.J.; Masekameni, M.D.; Mmereki, D. Waste-to-energy in a developing country: The state of landfill gas to energy in the Republic of South Africa. Energy Explor. Exploit. 2022, 40, 1287–1312. [Google Scholar] [CrossRef]
- Sauk, A.H.; Hug, L.A. Substrate-restricted methanogenesis and limited volatile organic compound degradation in highly diverse and heterogeneous municipal landfill microbial communities. ISME Commun. 2022, 2, 58. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Peng, C.; Chen, W. Characterization and treatment of landfill leachate: A review. Water Res. 2021, 203, 117525. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Okonta, F.N.; Ntuli, F. Municipal solid waste generation and characterization in the City of Johannesburg: A pathway for the implementation of zero waste. Waste Manag. 2018, 79, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wen, Z.; Hu, Y.; Fei, F.; Wang, Y.; Xie, Y. System simulation and multi-objective optimization methodology for sustainable municipal solid waste classification management: A case study in China. Sustain. Prod. Consum. 2024, 50, 475–485. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Zhang, J.; Liu, Y.; Chen, L.; Yang, M.; Osman, A.I.; Farghali, M.; Liu, E.; Hassan, D.; et al. Municipal solid waste management challenges in developing regions: A comprehensive review and future perspectives for Asia and Africa. Sci. Total Environ. 2024, 930, 172794. [Google Scholar] [CrossRef]
- Abd Alqader, A.; Hamad, J. Municipal solid waste composition determination supporting the integrated solid waste management in Gaza strip. Int. J. Environ. Sci. Dev. 2012, 3, 172. [Google Scholar] [CrossRef]
- Aderoju Olaide, M. Municipal solid waste characterization as a measure towards sustainable waste management in Abuja, Nigeria. J. Environ. Sci. Public Health 2020, 4, 43–60. [Google Scholar] [CrossRef]
- Singh, Y.D.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Adeleke, O.; Akinlabi, S.A.; Tien-Chien, J.; Dunmade, I. Sustainable utilization of energy from waste: A review of potentials and challenges of Waste-to-energy in South Africa. Int. J. Green Energy 2021, 18, 1550–1564. [Google Scholar] [CrossRef]
- Esteban Cantillo, O.J.; Quesada, B. Solid Waste Characterization and Management in a Highly Vulnerable Tropical City. Sustainability 2022, 14, 16339. [Google Scholar] [CrossRef]
- Ghanbarzadeh Lak, M.; Ghaffariraad, M.; Jahangirzadeh Soureh, H. Characteristics and Impacts of Municipal Solid Waste (MSW). In Technical Landfills and Waste Management: Volume 1: Landfill Impacts, Characterization and Valorisation; Anouzla, A., Souabi, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 31–92. [Google Scholar]
- Massoud, M.A.; Mokbel, M. Determinants of waste characterization in Lebanon and material recovery potential. J. Mater. Cycles Waste Manag. 2022, 24, 1913–1922. [Google Scholar] [CrossRef]
- Paddy, E.Y.; Namondo, B.V.; Fopah-Lele, A.; Foba-Tendo, J.; Ibrahim, F.S.; Tanyi, E. Assessment of the energy potential of municipal solid waste: A case study of Mussaka dumpsite, Buea Cameroon. Bioresour. Technol. Rep. 2024, 25, 101784. [Google Scholar] [CrossRef]
- Abylkhani, B.; Aiymbetov, B.; Yagofarova, A.; Tokmurzin, D.; Venetis, C.; Poulopoulos, S.; Sarbassov, Y.; Inglezakis, V.J. Seasonal characterisation of municipal solid waste from Astana city, Kazakhstan: Composition and thermal properties of combustible fraction. Waste Manag. Res. 2019, 37, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Gupta, A.K.; Dubey, B.; Ghangrekar, M.M. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J. Air Waste Manag. Assoc. 2022, 72, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Ibikunle, R.; Titiladunayo, I.; Lukman, A.; Dahunsi, S.; Akeju, E. Municipal solid waste sampling, quantification and seasonal characterization for power evaluation: Energy potential and statistical modelling. Fuel 2020, 277, 118122. [Google Scholar] [CrossRef]
- Riman, H.; Adie, G.; Anake, W.; Ana, G. Seasonal methane emission from municipal solid waste disposal sites in Lagos, Nigeria. Sci. Rep. 2022, 12, 18314. [Google Scholar] [CrossRef]
- Kamran, A.; Chaudhry, M.N.; Batool, S.A. Effects of socio-economic status and seasonal variation on municipal solid waste composition: A baseline study for future planning and development. Environ. Sci. Eur. 2015, 27, 16. [Google Scholar] [CrossRef]
- Denafas, G.; Ruzgas, T.; Martuzevičius, D.; Shmarin, S.; Hoffmann, M.; Mykhaylenko, V.; Ogorodnik, S.; Romanov, M.; Neguliaeva, E.; Chusov, A. Seasonal variation of municipal solid waste generation and composition in four East European cities. Resour. Conserv. Recycl. 2014, 89, 22–30. [Google Scholar] [CrossRef]
- Ozcan, H.K.; Guvenc, S.Y.; Guvenc, L.; Demir, G. Municipal Solid Waste Characterization According to Different Income Levels: A Case Study. Sustainability 2016, 8, 1044. [Google Scholar] [CrossRef]
- Nell, C.; Schenck, C.; Blaauw, D.; Grobler, L.; Viljoen, K. A three-pronged approach to waste composition determination. J. Environ. Manag. 2022, 303, 114203. [Google Scholar] [CrossRef]
- Owojori, O.; Edokpayi, J.N.; Mulaudzi, R.; Odiyo, J.O. Characterisation, Recovery and Recycling Potential of Solid Waste in a University of a Developing Economy. Sustainability 2020, 12, 5111. [Google Scholar] [CrossRef]
- Tsheleza, V.; Ndhleve, S.; Kabiti, H.; Nakin, M. Household solid waste quantification, characterisation and management practices in Mthatha City, South Africa. Int. J. Environ. Waste Manag. 2022, 29, 208. [Google Scholar] [CrossRef]
- Nell, C.M.; Schenck, C.; De Waal, J. Waste characterisation in Stellenbosch Local Municipality, South Africa. South Afr. J. Sci. 2022, 118, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Makgato, S.S. Analysis of Municipal Solid Waste in Soweto, Johannesburg Municipality, South Africa: Implications for Sustainable Waste Management Practices. Chem. Eng. Trans. 2024, 109, 37–42. [Google Scholar] [CrossRef]
- ASTM D5231-92; ASTM. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM: West Conshohocken, PA, USA, 2008.
- DEA. South Africa State of Waste. A Report. on the State of the Environment: First Draft. Report; DEA: Springfield, VA, USA, 2018. [Google Scholar]
- Godfrey, L.; Oelofse, S. Historical Review of Waste Management and Recycling in South Africa. Resources 2017, 6, 57. [Google Scholar] [CrossRef]
- Utho Capital. Pre-Feasibilty Study for the Proposed Regional Integrated Waste Facility “Ecopark” in Gauteng—Executive Summary Report; Utho Capital: Johannesburg, South Africa, 2023. [Google Scholar]
- Manyana, N. A net-zero and climate-resilient Tshwane by 2050. IMIESA 2022, 47, 30–31. [Google Scholar]
- ASTM D2974–07; Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Themelis, N.J.; Kim, Y.H. Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag. Res. 2002, 20, 234–242. [Google Scholar] [CrossRef]
- Hla, S.S.; Roberts, D. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Manag. 2015, 41, 12–19. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Makoś-Chełstowska, P.; Kurowska-Susdorf, A.; Treviño, M.J.S.; Guzmán, S.Z.; Mostafa, H.; Cordella, M. End-of-life management of single-use baby diapers: Analysis of technical, health and environment aspects. Sci. Total Environ. 2022, 836, 155339. [Google Scholar] [CrossRef]
- Oyoo, R.; Leemans, R.; Mol, A.P.J. The determination of an optimal waste management scenario for Kampala, Uganda. Waste Manag. Res. 2013, 31, 1203–1216. [Google Scholar] [CrossRef]
- Makarichi, L.; Kan, R.; Jutidamrongphan, W.; Techato, K.-a. Suitability of municipal solid waste in African cities for thermochemical waste-to-energy conversion: The case of Harare Metropolitan City, Zimbabwe. Waste Manag. Res. 2018, 37, 83–94. [Google Scholar] [CrossRef]
- Miezah, K.; Obiri-Danso, K.; Kádár, Z.; Fei-Baffoe, B.; Mensah, M.Y. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag. 2015, 46, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Geng, Y.; Robins, D.; Cooper, D.; Roberts, W.; Vogtländer, J. Improvement of waste management practices in a fast expanding sub-megacity in Pakistan, on the basis of qualitative and quantitative indicators. Waste Manag. 2019, 85, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Sbert, J.; Ricci-Cabello, I.; Villalonga-Olives, E.; Cabeza-Irigoyen, E. The impact of tourism on municipal solid waste generation: The case of Menorca Island (Spain). Waste Manag. 2013, 33, 2589–2593. [Google Scholar] [CrossRef]
- Umar, B.B.; Kunda-Wamuwi, C.F. Socio-Economic effects of load shedding on poor urban households and small business enterprises in Lusaka, Zambia. Energy Environ. Res. 2019, 9, 20–29. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Akinlabi, S.A.; Jen, T.C.; Dunmade, I. Evaluation and Prediction of Energy Content of Municipal Solid Waste: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012097. [Google Scholar] [CrossRef]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Smårs, S.; Jönsson, H. Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. J. Clean. Prod. 2019, 240, 118165. [Google Scholar] [CrossRef]
- Kumar, D.J.P.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Taşpınar, F.; Uslu, M.A. Evaluation of combustibility and energy potential of municipal solid waste: The case of Esenler municipality. Int. J. Energy Appl. Technol. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Manag. Res. 2014, 34, 249–255. [Google Scholar] [CrossRef]
- Kasiński, S.; Dębowski, M. Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies 2024, 17, 4704. [Google Scholar] [CrossRef]
- Ahmad, N.; Sahrin, N.; Talib, N.; Abdul Ghani, F.S. Characterization of energy content in food waste by using thermogravimetric analyser (TGA) and elemental analyser (CHNS-O). J. Phys. Conf. Ser. 2019, 1349, 012140. [Google Scholar] [CrossRef]
- Rand, T.; Haukohl, J.; Marxen, U. Municipal Solid Waste Incineration: Requirements for a Successful Project; The World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Lohani, A.; Bista, B.; Mahato, A.B.; Khanal, A.J.; Dulal, B.; Tripathee, B.R.; Karki, K.; Gurung, S.B.; Kafle, S.; Karki, B.K. Seasonal variation in solid waste composition and characteristics in a newly formed semi-urban municipality of Nepal. Clean. Waste Syst. 2025, 10, 100228. [Google Scholar] [CrossRef]
- Tan, S.T.; Lee, C.T.; Hashim, H.; Ho, W.S.; Lim, J.S. Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 2014, 71, 48–58. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; Goel, S.; John, M.; Dubey, B. Characterization of municipal solid waste based on seasonal variations, source and socio-economic aspects. Waste Dispos. Sustain. Energy 2021, 3, 275–288. [Google Scholar] [CrossRef]
- Tanner, V. Die Entwicklung der Von-Roll-Müllverbrennungsanlagen (The development of the Von-Roll incinerators). Schweiz. Bauztg. 1965, 83, 251–260. [Google Scholar] [CrossRef]
- Tursunov, O.; Abduganiev, N. A comprehensive study on municipal solid waste characteristics for green energy recovery in Urta-Chirchik: A case study of Tashkent region. Mater. Today Proc. 2020, 25, 67–71. [Google Scholar] [CrossRef]
- Ma, J.; Hipel, K.W. Exploring social dimensions of municipal solid waste management around the globe–A systematic literature review. Waste Manag. 2016, 56, 3–12. [Google Scholar] [CrossRef]
- Nam, H.; Wang, S.; Sanjeev, K.; Seo, M.W.; Adhikari, S.; Shakya, R.; Lee, D.; Shanmugam, S.R. Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst. Energy Convers. Manag. 2020, 225, 113408. [Google Scholar] [CrossRef]
- Smidt, E.; Lechner, P.; Schwanninger, M.; Haberhauer, G.; Gerzabek, M. Characterization of waste organic matter by FT-IR spectroscopy: Application in waste science. Appl. Spectrosc. 2002, 56, 1170–1175. [Google Scholar] [CrossRef]
- Grube, M.; Lin, J.-G.; Lee, P.H.; Kokorevicha, S. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 2006, 130, 324–333. [Google Scholar] [CrossRef]
- Biyada, S.; Merzouki, M.; Imtara, H.; Alajmi, M.F.; Elkarrach, K.; Mechchate, H.; Conte, R.; Benlemlih, M. Advanced characterization of organic matter decaying during composting of industrial waste using spectral methods. Processes 2021, 9, 1364. [Google Scholar] [CrossRef]
Country /City | Paper & Cardboard | Organics & Wood | Plastic | Metal | Textile & Leather/Rubber | Glass | Mixed /Other | References |
---|---|---|---|---|---|---|---|---|
Tshwane, SA | 13–16 | 44–49 | 10–17 | 0–1 | 1–3 | 3–6 | 3–6 | This research |
Johannesburg, SA | 12–19 | 13–29 | 18–28 | 5–10 | 3–11 | 4–15 | 15–20 | [14] |
Kampala, Uganda | 5.30 | 83.20 | 7.70 | 0.90 | 0.40 | 1.10 | 1.40 | [47] |
Harare, Zimbabwe | 7.00 | 46.00 | 13.00 | 2.00 | 4.00 | 4.00 | 24.00 | [48] |
Ghana | 5.00 | 61.00 | 14.00 | 3.00 | 3.00 | 3.00 | 11.00 | [49] |
Gujranwala, Pakistan | 7.90 | 61.40 | 9.50 | 0.10 | 0.00 | 0.00 | 21.10 | [50] |
Globally | 17 | 46 | 12 | 4 | 2 | 5 | 14 | [3] |
MSW Category | SSL | HL | ||
---|---|---|---|---|
Mc (wt.%) | Range | Mc (wt.%) | Range | |
Paper | 3.80 ± 0.91 | 3.10–4.70 | 3.67 ± 0.52 | 3.30–4.20 |
Organic waste | 53.78 ± 9.45 | 42.50–58.30 | 50.96 ± 6.32 | 47.10–54.50 |
Miscellaneous waste | 27.99 ± 4.03 | 22.90–30.00 | 29.91 ± 7.88 | 24.60–35.10 |
Parameters | HL | SSL |
---|---|---|
Proximate analysis (%), adb | ||
Moisture content | 14.32 | 15.02 |
Volatile matter | 48.85 | 44.78 |
Ash content | 15.11 | 17.25 |
Fixed carbon | 21.72 | 22.95 |
Ultimate analysis (%), daf | ||
Carbon | 53.06 | 50.04 |
Hydrogen | 3.36 | 2.98 |
Nitrogen | 1.98 | 1.78 |
Sulphur | 0 | 0 |
Oxygen | 41.60 | 45.20 |
Higher heating value (MJ/kg) | 18.96 | 17.86 |
Lower heating value (MJ/kg) | 16.26 | 15.25 |
Wavenumber (cm−1) | Band Assignments |
---|---|
3400–3200 | (OH) hydroxyl groups in lignin, cellulose and hemicelluloses intermolecular hydrogen-bonded. |
2930–2860 | (C-H) aliphatic methylene, alkanes and fatty acids groups. |
1700–1600 | (C=O, C=C) amides and aromatics groups. |
1440–1300 | (C-H, N-O, C-N) in cellulose and hemicelluloses. |
1250–900 | (C-O-C, C-O, C-O-P, C-N, C-H) stretching vibration of different groups of lignin, cellulose and hemicelluloses. |
1030–1020 | (C-O-C) stretching vibration of lignin and polysaccharides. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepota, K.; Premlall, K.; Mabuza, M. Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies. Waste 2025, 3, 22. https://doi.org/10.3390/waste3030022
Lepota K, Premlall K, Mabuza M. Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies. Waste. 2025; 3(3):22. https://doi.org/10.3390/waste3030022
Chicago/Turabian StyleLepota, Khanyisile, Kasturie Premlall, and Major Mabuza. 2025. "Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies" Waste 3, no. 3: 22. https://doi.org/10.3390/waste3030022
APA StyleLepota, K., Premlall, K., & Mabuza, M. (2025). Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies. Waste, 3(3), 22. https://doi.org/10.3390/waste3030022