Mycosorbent Alternaria jacinthicola AD2 as a Sustainable Alternative for the Removal of Metallic Pollutants from Industrial Effluent
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation and Preparation of Mycosorbent
2.2. Preparation of Multimetal Solution for Competitive Biosorption
2.3. Point of Zero Charge (PZC) of Mycosorbent
2.4. Process Optimisation by One Factor at a Time Approach (OFAT)
2.4.1. Effect of Contact Time
2.4.2. Effect of pH
2.4.3. Effect of Initial Metal Ion Concentrations
2.4.4. Effect of Dosage Concentrations
2.4.5. Effect of Temperature
2.5. Heavy Metal Analysis
2.6. Data Statistical Analysis
2.7. Thermodynamic Modelling Study
2.8. Molecular Identification and Growth Characteristics Study of Mycosorbent AD2
2.9. Surface Characterisation of Mycosorbent AD2 by FT-IR and SEM Analysis
3. Results
3.1. Point of Zero Charge Study on AD2 Mycosorbent
3.2. Process Optimisation Using One-Factor-At-a-Time (OFAT) Approach
3.2.1. Effect of Contact Time on Competitive Biosorption by Mycosorbent AD2
3.2.2. Effect of pH on Competitive Biosorption by Mycosorbent AD2
3.2.3. Effect of Initial Metal Ion Concentrations on Competitive Biosorption by Mycosorbent AD2
3.2.4. Effect of Dosage Concentration on Competitive Biosorption by Mycosorbent AD2
3.2.5. Effect of Temperature on Competitive Biosorption by Mycosorbent AD2
3.3. Statistical Data Analysis of Process Optimisation for AD2 Mycosorbent
3.4. Thermodynamic Modelling Study of Mycosorbent AD2
3.5. Identification of AD2 Isolate by Growth Characteristics and 18S rRNA Gene Sequencing
3.6. Characterisation of AD2 Mycosorbent Using FT-IR and SEM Analysis
3.7. Possible Mechanisms of Mycosorption by AD2 Mycosorbent
3.8. Scale-Up Approach and Techno-Economic Analysis for Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Cossich, E.S.; Tavares, C.R.G.; Silva, E.A. Biosorption of nickel (II) and copper (II) ions by Sargassum sp. in nature and alginate extraction products. Bioresour. Technol. Rep. 2019, 5, 43–50. [Google Scholar] [CrossRef]
- Prajapati, A.V.; Baxi, N.N.; Dave, S.R.; Tipre, D.R. Mycosorption: A sustainable approach for removing heavy metals from simulated polluted water in non-competitive and competitive systems. Environ. Dev. Sustain. 2024, 26, 31557–31575. [Google Scholar] [CrossRef]
- Prajapati, A.V.; Dave, S.R.; Tipre, D.R. Mechanisms and major influencing factors for phycoremediation of metallic pollutants from industrial effluents. In Phycoremediation of Wastewater; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–20. [Google Scholar]
- Volesky, B.; Naja, G. Biosorption: Application strategies. In Proceedings of the 16th International Biohydrometallurgy Symposium, Cape Town, South Africa, 25–29 September 2005; pp. 25–29. [Google Scholar]
- Macena, M.; Pereira, H.; Cruz-Lopes, L.; Grosche, L.; Esteves, B. Competitive adsorption of metal ions by lignocellulosic materials: A review of applications, mechanisms and influencing factors. Separations 2025, 12, 70. [Google Scholar] [CrossRef]
- Hunce, S.Y.; Clemente, R.; Bernal, M.P. Energy production potential of phytoremediation plant biomass: Helianthus annuus and Silybum marianum. Ind. Crops Prod. 2019, 135, 206–216. [Google Scholar] [CrossRef]
- Sharma, S.; Das, D.K.; Vinod, V.; Kumar, T.; Mittal, A.; Verma, N. Phytoremediation of heavy metals in soil-concepts, advancements, and future directions. J. Soil Sci. Plant Nutr. 2025, 25, 1253–1280. [Google Scholar] [CrossRef]
- Prajapati, A.V.; Alreshidi, M.A.; Dave, S.R.; Tipre, D.R. Mycosorption: A sustainable approach towards an emerging concern for removal of heavy metal (s) contaminant from aquatic systems. J. Mol. Liq. 2024, 394, 123712. [Google Scholar] [CrossRef]
- Shah, K.R.; Duggirala, S.M.; Tipre, D.R.; Dave, S.R. Mechanistic aspects of Au (III) sorption by Aspergillus terreus SRD49. J. Taiwan Inst. Chem. Eng. 2017, 80, 46–51. [Google Scholar] [CrossRef]
- Legorreta-Castañeda, A.J.; Lucho-Constantino, C.A.; Coronel-Olivares, C.; Beltrán-Hernández, R.I.; Vázquez-Rodríguez, G.A. Biosorption of precious metals present at dilute concentrations on fungal pellets. Processes 2022, 10, 645. [Google Scholar] [CrossRef]
- de Freitas, F.; Battirola, L.D.; Arruda, R.; de Andrade, R.L.T. Assessment of the Cu (II) and Pb (II) removal efficiency of aqueous solutions by the dry biomass Aguapé: Kinetics of adsorption. Environ. Monit. Assess. 2019, 191, 751. [Google Scholar] [CrossRef]
- El-Bondkly, A.M.A.; El-Gendy, M.M.A.A. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022, 8, e09854. [Google Scholar] [CrossRef]
- El-Gendy, M.M.A.A.; Abdel-Moniem, S.M.; Ammar, N.S.; El-Bondkly, A.M.A. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertiliser industry effluents: Isotherm models evaluation and batch optimisation. Biometals 2023, 36, 1307–1329. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, A.; Mohammadi-Moghadam, F.; Shakeri, K.; Hemati, S. Equilibrium and thermodynamic studies on the biosorption of lead (II) by living and nonliving biomass of Penicillium notatum. J. Chem. 2022, 2022, 3109212. [Google Scholar] [CrossRef]
- Maqbool, M.; Sadaf, S.; Bhatti, H.N.; Rehmat, S.; Kausar, A.; Alissa, S.A.; Iqbal, M. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: Kinetics, thermodynamics and desorption studies. Surf. Interfaces 2021, 25, 101183. [Google Scholar] [CrossRef]
- Mohammad-Pajooh, E.; Turcios, A.E.; Cuff, G.; Weichgrebe, D.; Rosenwinkel, K.H.; Vedenyapina, M.D.; Sharifullina, L.R. Removal of inert COD and trace metals from stabilised landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manag. 2018, 228, 189–196. [Google Scholar] [CrossRef]
- Aracagök, Y.D. Biosorption of lead by a soil isolate Aspergillus neoalliaceus. Arch. Microbiol. 2022, 204, 547. [Google Scholar] [CrossRef]
- Tamjidi, S.; Ameri, A.; Esmaeili, H. A review of the application of fungi as an effective and attractive bio-adsorbent for biosorption of heavy metals from wastewater. Environ. Monit. Assess. 2023, 195, 91. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Çelik, G.; Yalçın, E.; Yılmaz, M.; Arıca, M.Y. Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: Evaluation of their Cr6+ removal efficiencies from aqueous medium. J. Hazard. Mater. 2005, 119, 219–229. [Google Scholar] [CrossRef]
- Menezes, J.M.C.; da Silva Bento, A.M.; de Paula Filho, F.J.; da Costa, J.G.M.; Coutinho, H.D.M.; Teixeira, R.N.P. Kinetic and thermodynamic study of copper (II) IONS biosorption by Caryocar Coriaceum Wittm bark. Sustain. Chem. Pharm. 2021, 19, 100364. [Google Scholar] [CrossRef]
- Odidika, C.C.; Ajwe, V.I.E.; Eboagu, C.N.; Awuzie, C.I. Corrosion inhibition and adsorption properties of Commelina benghalensis leaves extract on mild steel in 1M H2SO4 solution. Science 2020, 8, 86–92. [Google Scholar]
- Kokalj, A. Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Ciobanu, A.A.; Lucaci, A.R.; Bulgariu, L. Efficient metal ions biosorption on red and green algae biomass: Isotherm, kinetic and thermodynamic study. J. Appl. Phycol. 2024, 36, 3809–3827. [Google Scholar] [CrossRef]
- Aloufi, A.S.; Al Riyami, B.; Fawzy, M.A.; Al-Yasi, H.M.; Koutb, M.; Hassan, S.H. Model-assisted optimisation of cobalt biosorption on macroalgae Padina pavonica for wastewater treatment. Water 2024, 16, 887. [Google Scholar] [CrossRef]
- Liu, L.; Lin, X.; Luo, L.; Yang, J.; Luo, J.; Liao, X.; Cheng, H. Biosorption of copper ions through microalgae from piggery digestate: Optimisation, kinetics, isotherm and mechanism. J. Clean. Prod. 2021, 319, 128724. [Google Scholar] [CrossRef]
- Gururajan, K.; Belur, P.D. Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environ. Technol. Innov. 2018, 9, 91–99. [Google Scholar] [CrossRef]
- Mushtaq, S.; Bareen, F.E.; Tayyeb, A. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. Environ. Sci. Pollut. Res. 2023, 30, 10925–10954. [Google Scholar] [CrossRef] [PubMed]
- Embaby, M.A.; Haggag, E.S.A.; El-Sheikh, A.S.; Marrez, D.A. Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana. Environ. Sci. Pollut. Res. 2022, 29, 58388–58404. [Google Scholar] [CrossRef]
- Chen, S.H.; Cheow, Y.L.; Ng, S.L.; Ting, A.S.Y. Mechanisms for metal removal established via electron microscopy and spectroscopy: A case study on metal tolerant fungi Penicillium simplicissimum. J. Hazard. Mater. 2019, 362, 394–402. [Google Scholar] [CrossRef]
- Mazrou, Y.S.; Neha, B.; Kandoliya, U.K.; Srutiben, G.; Hardik, L.; Gaber, A.; Awad, M.F.; Hassan, M.M. Selection and characterisation of novel zinc-tolerant Trichoderma strains obtained by protoplast fusion. J. Environ. Biol. 2020, 41, 718–726. [Google Scholar] [CrossRef]
Analysis | AD2 |
---|---|
F-statistic | 11.6062 |
p-value | 0.0093 |
Mycosorbent | Treatments Pairwise | Q Statistic | p-Value | Inference |
---|---|---|---|---|
AD2 | A vs. B | 4.8179 | 0.0092676 | *** p < 0.01 |
Metals | Temp (K) | KL | ∆G0 (kJ/mol) | ∆H0 (kJ/mol) | ∆S0 (J/k.mol) | R2 |
---|---|---|---|---|---|---|
Copper | 297 | 1.20 | −0.4501 | 3.74 | 14.06 | 0.9932 |
305 | 1.23 | −0.5368 | ||||
323 | 1.35 | −0.8067 | ||||
Chromium | 297 | 5.75 | −4.3226 | 34.66 | 131.10 | 0.9981 |
305 | 7.96 | −5.2633 | ||||
323 | 17.7 | −7.7219 | ||||
Nickel | 297 | 1.04 | −0.1029 | 9.44 | 32.17 | 0.9990 |
305 | 1.17 | −0.4023 | ||||
323 | 1.42 | −0.9496 | ||||
Lead | 297 | 23.1 | −7.7549 | 22.31 | 101.26 | 0.9997 |
305 | 29.7 | −8.6034 | ||||
323 | 48.2 | −10.4069 | ||||
Cadmium | 297 | 1.28 | −0.6109 | 9.44 | 33.83 | 0.9990 |
305 | 1.42 | −0.9068 | ||||
323 | 1.73 | −1.4825 |
Sample ID | Identified Species | Query Length (bp) | Max Score | Total Score | Cover | E-Value | Per. Ident. | Acc. Len. | Subject Accession | NCBI Gene Accession No. |
---|---|---|---|---|---|---|---|---|---|---|
AD2 | Alternaria jacinthicola | 540 | 992 | 992 | 99% | 0 | 100.00 | 609 | MK649899.1 | PQ817781 |
Regions | AD2 | |
---|---|---|
Before | After | |
Single bond | 3842.95 | 3858.24 |
3737.11 | 3750.28 | |
- | 3633.32 | |
- | 3592.09 | |
- | 3480.57 | |
- | - | |
- | 3207.11 | |
2928.11 | - | |
- | 2891.61 | |
Triple bond | - | 2323.23 |
Double bond | - | - |
1547.25 | 1542.56 | |
- | 1414.75 | |
Finger print | - | - |
1030.80 | 1057.97 | |
- | 737.46 | |
639.13 | 620.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajapati, A.V.; Dave, S.R.; Tipre, D.R. Mycosorbent Alternaria jacinthicola AD2 as a Sustainable Alternative for the Removal of Metallic Pollutants from Industrial Effluent. Waste 2025, 3, 25. https://doi.org/10.3390/waste3030025
Prajapati AV, Dave SR, Tipre DR. Mycosorbent Alternaria jacinthicola AD2 as a Sustainable Alternative for the Removal of Metallic Pollutants from Industrial Effluent. Waste. 2025; 3(3):25. https://doi.org/10.3390/waste3030025
Chicago/Turabian StylePrajapati, Anjali V., Shailesh R. Dave, and Devayani R. Tipre. 2025. "Mycosorbent Alternaria jacinthicola AD2 as a Sustainable Alternative for the Removal of Metallic Pollutants from Industrial Effluent" Waste 3, no. 3: 25. https://doi.org/10.3390/waste3030025
APA StylePrajapati, A. V., Dave, S. R., & Tipre, D. R. (2025). Mycosorbent Alternaria jacinthicola AD2 as a Sustainable Alternative for the Removal of Metallic Pollutants from Industrial Effluent. Waste, 3(3), 25. https://doi.org/10.3390/waste3030025