Serum Calcium Level and Functional Atherosclerosis in Relation to Human T-Cell Leukemia Virus 1 Infection in Older Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Desgin and Population
2.2. Blood Pressure
2.3. Laboratory Measurments
2.4. Detection of Human T-Cell Leukemia Virus 1 (HTLV-1)
2.5. Cardio-Ankle Vascular Index (CAVI) Measurement
2.6. Carotid Intima-Media Thickness (CIMT) Measurement
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Association between Serum Calcium Level and Hypertension by HTLV-1 Carrier Status
3.3. Association between Serum Calcium Level and Functional Atherosclerosis by HTLV-1 Carrier Status
3.4. Effect of HTLV-1 Infection on the Association between Serum Calcium Level and Functional Atherosclerosis
3.5. Sex-Specific Analysis of the Association bewteen Serum Calcium Level and Functional Atherosclerosis by HTLV-1 Carrier Status
3.6. Association bewteen Hypertension and Functional Atherosclerosis by HTLV-1 Carrier Status
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.Y.; Kondo, H.; et al. Cardio-ankle vascular index and circulating CD34-positive cell levels as indicators of endothelial repair activity in older Japanese men. Geriatr. Gerontol. Int. 2019, 19, 557–562. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Watanabe, T. Human T lymphotropic virus type-I and adult T-cell leukemia in Japan. Int. J. Hematol. 2002, 76 (Suppl. S2), 240–245. [Google Scholar] [CrossRef]
- Murphy, E.L.; Hanchard, B.; Figueroa, J.P.; Gibbs, W.N.; Lofters, W.S.; Campbell, M.; Goedert, J.J.; Blattner, W.A. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int. J. Cancer 1989, 43, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.E.; Osame, M.; Kubota, H.; Igata, A.; Nishitani, H.; Maeda, Y.; Khabbaz, R.F.; Janssen, R.S. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 1990, 3, 1096–1101. [Google Scholar] [PubMed]
- Maloney, E.M.; Cleghorn, F.R.; Morgan, O.S.; Rodgers-Johnson, P.; Cranston, B.; Jack, N.; Blattner, W.A.; Bartholomew, C.; Manns, A. Incidence of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1998, 17, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Furugen, R.; Iwasaki, T.; Fukuda, H.; Hayashida, H.; Kawasaki, K.; Kiyoura, K.; Kawashiri, S.Y.; et al. Association between human T cell leukemia virus type-1 (HTLV-1) infection and advanced periodontitis in relation to atherosclerosis among elderly Japanese: A cross-sectional study. Environ. Health Prev. Med. 2019, 24, 81. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Furugen, R.; Iwasaki, T.; Fukuda, H.; Hayashida, H.; Kawasaki, K.; Kiyoura, K.; Kawashiri, S.Y.; et al. Association between human T cell leukemia virus 1(HTLV-1) infection and advanced periodontitis in relation to hematopoietic activity among elderly participants: A cross-sectional study. Environ. Health Prev. Med. 2019, 24, 42. [Google Scholar] [CrossRef]
- Chansawang, K.; Lertpimonchai, A.; Siripaiboonpong, N.; Thienpramuk, L.; Vathesatogkit, P.; Limpijankit, T.; Charatkulangkun, O. The severity and extent of periodontitis is associated with cardio-ankle vascular index, a novel arterial stiffness parameter. Clin. Oral Investig. 2021, 25, 3487–3495. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association of arterial stiffness and diabetes with triglycerides-to-HDL cholesterol ratio for Japanese men: The Nagasaki Islands Study. Atherosclerosis 2013, 228, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Eusebio-Ponce, E.; Anguita, E.; Paulino-Ramirez, R.; Candel, F.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev. Esp. Quimioter. 2019, 32, 485–496. [Google Scholar] [PubMed]
- Pinto, D.O.; DeMarino, C.; Pleet, M.L.; Cowen, M.; Branscome, H.; Al Sharif, S.; Jones, J.; Dutartre, H.; Lepene, B.; Liotta, L.A.; et al. HTLV-1 extracellular vesicles promote cell-to-cell contact. Front. Microbiol. 2019, 10, 2147. [Google Scholar] [CrossRef] [PubMed]
- Fochi, S.; Mutascio, S.; Bertazzoni, U.; Zipeto, D.; Romanelli, M.G. HTLV deregulation of the NF-κB pathway: An update on tax and antisense proteins role. Front. Microbiol. 2018, 21, 285. [Google Scholar] [CrossRef]
- Hanon, E.; Asquith, R.E.; Taylor, G.P.; Tanaka, Y.; Weber, J.N.; Bangham, C.R. High frequency of viral protein expression in human T cell lymphotropic virus type 1-infected peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses. 2000, 16, 1711–1715. [Google Scholar] [CrossRef]
- Harhaj, E.W.; Giam, C.Z. NF-κB signaling mechanisms in HTLV-1 induced adult T-cell leukemia/lymphoma. FEBS J. 2018, 285, 3324–3336. [Google Scholar] [CrossRef]
- Liao, Y.C.; Wang, Y.S.; Guo, Y.C.; Ozaki, K.; Tanaka, T.; Lin, H.F.; Chang, M.H.; Chen, K.C.; Yu, M.L.; Sheu, S.H.; et al. BRAP activates inflammatory cascades and increases the risk for carotid atherosclerosis. Mol. Med. 2011, 17, 1065–1074. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Koyamatsu, J.; Fukui, S.; Tamai, M.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Circulating CD34+ cells and active arterial wall thickening among elderly men: A prospective study. Sci. Rep. 2020, 10, 4656. [Google Scholar] [CrossRef] [PubMed]
- El-Sabban, M.E.; Merhi, R.A.; Haidar, H.A.; Arnulf, B.; Khoury, H.; Basbous, J.; Nijmeh, J.; de Thé, H.; Hermine, O.; Bazarbachi, A. Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells. Blood 2002, 99, 3383–3389. [Google Scholar] [CrossRef]
- Ho, D.D.; Rota, T.R.; Hirsch, M.S. Infection of human endothelial cells by human T-lymphotropic virus type 1. Proc. Natl. Acad. Sci. USA 1984, 81, 7588–7590. [Google Scholar] [CrossRef] [PubMed]
- Nicot, C.; Astier-Gin, T.; Guillemain, B. Activation of Bcl-2 expression in human endothelial cells chronically expressing the human T-cell lymphotropic virus type I. Virology 1997, 236, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Sieburg, M.; Samuelson, E.; Feuer, G. Human T-cell lymphotropic virus type 1 infection of CD34+ hematopoietic progenitor cells induces cell cycle arrest by modulation of p21(cip1/war1) and survivin. Stem Cells 2008, 26, 3047–3058. [Google Scholar] [CrossRef]
- Shimizu, Y.; Maeda, T. Influence of height on endothelial maintenance activity: A narrative review. Environ. Health Prev. Med. 2021, 26, 19. [Google Scholar] [CrossRef]
- Shimizu, Y. Comment on “Does body height affect vascular function?”. Hypertens. Res. 2022, 45, 1091–1092. [Google Scholar] [CrossRef]
- Nadella, M.V.; Dirksen, W.P.; Nadella, K.S.; Shu, S.; Cheng, A.S.; Morgenstern, J.A.; Richard, V.; Fernandez, S.A.; Huang, T.H.; Guttridge, D.; et al. Transcriptional regulation of parathyroid hormone-related protein promoter P2 by NF-kappaB in adult T-cell leukemia/lymphoma. Leukemia 2007, 21, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Rankin, W.; Grill, V.; Martin, T.J. Parathyroid hormone-related protein and hypercalcemia. Cancer 1997, 80 (Suppl. S8), 1564–1571. [Google Scholar] [CrossRef]
- Weaver, C.M.; Peacock, M. Calcium. Adv. Nutr. 2019, 10, 546–548. [Google Scholar] [CrossRef]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592, 3985–3995. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Yamanashi, H.; Koyamatsu, J.; Nagayoshi, M.; Shimizu, Y.; Kawashiri, S.Y.; Kondo, H.; Fukui, S.; Tamai, M.; Sato, S.; Yanagihara, K.; et al. Human T-cell leukemia virus-1 infection is associated with atherosclerosis as measured by carotid intima-media thickness in Japanese community-dwelling older people. Clin. Infect. Dis. 2018, 67, 291–294. [Google Scholar] [CrossRef]
- Yambe, T.; Yoshizawa, M.; Saijo, Y.; Yamaguchi, T.; Shibata, M.; Konno, S.; Nitta, S.; Kuwayama, T. Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed. Pharmacother. 2004, 58 (Suppl. S1), S95–S98. [Google Scholar] [CrossRef]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Koji, Y.; Yambe, M.; Motobe, H.; Glunizia, Z.; Yamamoto, Y.; Hori, S. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003, 26, 801–806. [Google Scholar] [CrossRef]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Takamura, N.; Akashi, S.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, Y.; Kusano, Y.; Aoyagi, K. Evaluation of clinical markers of atherosclerosis in young and elderly Japanese adults. Clin. Chem. Lab. Med. 2006, 44, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Miyagawa, K. Correlation of increased serum calcium with elevated blood pressure and vascular resistance during calcium infusion in normotensive man. J. Hypertens. 1990, 8, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Maeda, T. Platelets as an indicator of vascular repair in elderly Japanese men. Oncotarget 2016, 7, 44919–44926. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.Y.; Kondo, H.; et al. Association between chronic kidney disease and carotid intima-media thickness in relation to circulating CD34-positive cell count among community-dwelling elderly Japanese men. Atherosclerosis 2019, 283, 85–91. [Google Scholar] [CrossRef]
- Li, J.; Agarwal, S.K.; Alonso, A.; Blecker, S.; Chamberlain, A.M.; London, S.J.; Loehr, L.R.; McNeill, A.M.; Poole, C.; Soliman, E.Z.; et al. Airflow obstruction, lung function, and incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2014, 129, 971–980. [Google Scholar] [CrossRef]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Kawashiri, S.Y.; Yamanashi, H.; Tamai, M.; Nagata, Y.; Maeda, T. Possible mechanisms underlying the association between human T-cell leukemia virus type 1 (HTLV-1) and hypertension in elderly Japanese population. Environ. Health Prev. Med. 2021, 26, 17. [Google Scholar] [CrossRef]
- Morgan, K.G. Calcium and vascular smooth muscle tone. Am. J. Med. 1987, 82, 9–15. [Google Scholar] [CrossRef]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Stellos, K.; Seizer, P.; Bigalke, B.; Daub, K.; Geisler, T.; Gawaz, M. Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin. Thromb. Hemost. 2010, 36, 139–145. [Google Scholar] [CrossRef]
- Stellos, K.; Langer, H.; Daub, K.; Schoenberger, T.; Gauss, A.; Geisler, T.; Bigalke, B.; Mueller, I.; Schumm, M.; Schaefer, I.; et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 2008, 117, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Bornfeldt, K.E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 2016, 118, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.M.; Pearce, S.W.A.; Xia, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol. 2019, 112, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Marks, K.H.; Kilav, R.; Naveh-Many, T.; Silver, J. Calcium, phosphate, vitamin D, and the parathyroid. Pediatr. Nephrol. 1996, 10, 364–367. [Google Scholar] [CrossRef]
- Silver, J.; Naveh-Many, T. Phosphate and the parathyroid. Kidney Int. 2009, 75, 898–905. [Google Scholar] [CrossRef]
- Silver, J.; Moallem, E.; Kilav, R.; Sela, A.; Naveh-Many, T. Regulation of the parathyroid hormone gene by calcium, phosphate and 1,25-dihydroxyvitamin D. Nephrol. Dial. Transplant. 1998, 13 (Suppl. S1), 40–44. [Google Scholar] [CrossRef]
- Brown, E.M.; Hebert, S.C. Calcium-receptor-regulated parathyroid and renal function. Bone 1997, 20, 303–309. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Hao, Z.; Hu, Y.; Li, J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 2021, 192, 114669. [Google Scholar] [CrossRef]
- McKane, W.R.; Khosla, S.; Egan, K.S.; Robins, S.P.; Burritt, M.F.; Riggs, B.L. Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. J. Clin. Endocrinol. Metab. 1996, 81, 1699–1703. [Google Scholar] [CrossRef]
- Wake, A.; Tanaka, Y.; Nakatsuka, K.; Misago, M.; Oda, S.; Morimoto, I.; Eto, S. Calcium-dependent homotypic adhesion through leukocyte function-associated antigen-1/intracellular adhesion molecule-1 induces interleukin-1 and parathyroid hormone-related protein production on adult T-cell leukemia cells in vitro. Blood 1995, 86, 2257–2267. [Google Scholar] [CrossRef]
- Sedding, D.G.; Boyle, E.C.; Demandt, J.A.F.; Sluimer, J.C.; Dutzmann, J.; Haverich, A.; Bauersachs, J. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 2018, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Gamma-glutamyl transpeptidase (γ-GTP) has an ambivalent association with hypertension and atherosclerosis among elderly Japanese men: A cross-sectional study. Environ. Health Prev. Med. 2019, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Yamanashi, H.; Miyata, J.; Takada, M.; Noguchi, Y.; Honda, Y.; Nonaka, F.; Nakamichi, S.; Nagata, Y.; Maeda, T. VEGF polymorphism rs3025039 and human T-cell leukemia virus 1 (HTLV-1) infection among older Japanese individuals; A cross-sectional study. Bioengineering 2022, 9, 527. [Google Scholar] [CrossRef] [PubMed]
Human T-Cell Leukemia Virus Type-1 (HTLV-1) | p | ||
---|---|---|---|
(−) | (+) | ||
No. of participants | 1372 | 322 | |
Men, % | 35.8 | 30.2 | 0.070 |
Age, year | 72.0 ± 6.9 | 73.8 ± 7.0 | <0.001 |
Hypertension, n (%) | 875 (63.8) | 198 (61.5) | 0.444 |
Anti-hypertensive medication use, n (%) | 464 (33.8) | 107 (33.2) | 0.840 |
TRACP-5b, mU/dL | 318 ± 159 | 304 ± 160 | 0.183 |
BAP, μg/dL | 14.8 ± 5.7 | 14.4 ± 5.8 | 0.261 |
Serum calcium, mg/dL | 9.5 ± 0.4 | 9.4 ± 0.4 | 0.003 |
Serum phosphate, mg/dL | 3.4 ± 0.4 | 3.5 ± 0.5 | 0.074 |
eGFR, mL/min/1.73 m2 | 70.2 ± 14.9 | 68.6 ± 14.5 | 0.074 |
Structural atherosclerosis, n (%) | 457 (33.3) | 120 (37.3) | 0.177 |
Functional atherosclerosis, n (%) | 517 (37.7) | 137 (42.5) | 0.107 |
CIMT, mm | 0.94 ± 0.21 | 0.97 ± 0.23 | 0.035 |
CAVI | 8.7 ± 1.2 | 8.8 ± 1.3 | 0.025 |
Human T-Cell Leukemia Virus Type-1 (HTLV-1) | ||||||||
---|---|---|---|---|---|---|---|---|
(−) | (+) | |||||||
Serum Calcium | p for Trend | Serum Calcium | p for Trend | |||||
T1 (Low) | T2 | T3 (High) | T1 (Low) | T2 | T3 (High) | |||
No. of participants | 464 | 484 | 424 | 144 | 103 | 75 | ||
Men, % | 34.9 | 33.5 | 39.4 | 0.160 | 30.6 | 24.3 | 38.7 | 0.120 |
Age, year | 73.2 ± 7.0 | 71.8 ± 6.9 | 70.8 ± 6.9 | <0.001 | 74.1 ± 6.8 | 73.7 ± 6.9 | 73.6 ± 7.8 | 0.860 |
Hypertension, n (%) | 259 (55.8) | 311 (64.3) | 305 (71.9) | <0.001 | 77 (53.5) | 63 (61.2) | 58 (77.3) | 0.003 |
Anti-hypertensive medication use, n (%) | 114 (24.6) | 164 (33.9) | 186 (43.9) | <0.001 | 35 (24.3) | 38 (36.9) | 34 (45.3) | 0.005 |
TRACP-5b, mU/dL | 290 ± 155 | 324 ± 153 | 339 ± 166 | <0.001 | 282 ± 151 | 326 ± 171 | 317 ± 159 | 0.081 |
BAP, μg/dL | 14.8 ± 5.8 | 14.7 ± 5.5 | 14.9 ± 5.7 | 0.872 | 14.9 ± 6.5 | 14.2 ± 5.5 | 13.8 ± 4.5 | 0.418 |
Serum phosphate, mg/dL | 3.3 ± 0.4 | 3.4 ± 0.4 | 3.5 ± 0.5 | <0.001 | 3.4 ± 0.5 | 3.5 ± 0.5 | 3.5 ± 0.5 | 0.190 |
eGFR, mL/min/1.73 m2 | 71.7 ± 15.7 | 69.9 ± 14.1 | 69.0 ± 14.8 | 0.025 | 69.1 ± 14.6 | 68.8 ± 14.4 | 67.3 ± 14.5 | 0.655 |
Structural atherosclerosis, n (%) | 164 (35.3) | 156 (32.2) | 137 (32.3) | 0.520 | 53 (36.8) | 40 (38.8) | 27 (36.0) | 0.918 |
Functional atherosclerosis, n (%) | 192 (41.4) | 173 (35.7) | 152 (35.8) | 0.130 | 54 (37.5) | 42 (40.8) | 41 (54.7) | 0.046 |
CIMT, mm | 0.95 ± 0.20 | 0.94 ± 0.21 | 0.94 ± 0.21 | 0.787 | 0.96 ± 0.24 | 1.00 ± 0.24 | 0.95 ± 0.18 | 0.302 |
CAVI | 8.7 ± 1.0 | 8.7 ± 1.2 | 8.7 ± 0.65 | 0.646 | 8.7 ± 1.0 | 8.9 ± 1.3 | 9.1 ± 1.6 | 0.100 |
Serum Calcium | p | 1 SD Increment of Serum Calcium | |||
---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | |||
HTLV-1 (+) | |||||
No. of participants | 144 | 103 | 75 | ||
No. of cases (%) | 77 (53.5) | 63 (61.2) | 58 (77.3) | ||
Model 1 | Ref | 1.48 (0.86, 2.52) | 3.32 (1.72, 6.44) | <0.001 | 1.79 (1.37, 2.33) |
Model 2 | Ref | 1.43 (0.82, 2.51) | 3.63 (1.81, 7.29) | <0.001 | 1.79 (1.36, 2.37) |
Model 3 | Ref | 1.39 (0.79, 2.45) | 3.67 (1.82, 7.38) | <0.001 | 1.78 (1.35, 2.35) |
HTLV-1 (−) | |||||
No. of participants | 464 | 484 | 424 | ||
No. of cases (%) | 259 (55.8) | 311 (64.3) | 305 (71.9) | ||
Model 1 | Ref | 1.59 (1.21, 2.08) | 2.43 (1.81, 3.25) | <0.001 | 1.54 (1.36, 1.75) |
Model 2 | Ref | 1.56 (1.18, 2.05) | 2.37 (1.75, 3.21) | <0.001 | 1.53 (1.34, 1.74) |
Model 3 | Ref | 1.57 (1.19, 2.07) | 2.38 (1.76, 3.23) | <0.001 | 1.53 (1.35, 1.74) |
Serum Calcium | p | 1 SD Increment of Serum Calcium | |||
---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | |||
HTLV-1 (+) | |||||
No. of participants | 144 | 103 | 75 | ||
No. of cases (%) | 54 (37.5) | 42 (40.8) | 41 (54.7) | ||
Model 1 | Ref | 1.29 (0.73, 2.27) | 2.36 (1.25, 4.45) | 0.010 | 1.47 (1.14, 1.89) |
Model 2 | Ref | 1.37 (0.77, 2.45) | 2.62 (1.36, 5.06) | 0.005 | 1.54 (1.18, 2.01) |
Model 3 | Ref | 1.36 (0.76, 2.44) | 2.62 (1.36, 5.06) | 0.005 | 1.54 (1.18, 2.01) |
HTLV-1 (−) | |||||
No. of participants | 464 | 484 | 424 | ||
No. of cases (%) | 192 (41.4) | 173 (35.7) | 152 (35.8) | ||
Model 1 | Ref | 0.91 (0.68, 1.22) | 0.98 (0.71, 1.32) | 0.856 | 0.98 (0.87, 1.12) |
Model 2 | Ref | 0.92 (0.69, 1.24) | 0.99 (0.72, 1.35) | 0.927 | 0.99 (0.88, 1.13) |
Model 3 | Ref | 0.92 (0.69, 1.24) | 0.99 (0.72, 1.35) | 0.906 | 0.99 (0.87, 1.13) |
Human T-Cell Leukemia Virus Type-1 (HTLV-1) | Interaction | ||
---|---|---|---|
(−) | (+) | ||
Men | |||
No. of participants | 491 | 98 | |
No. of cases (%) | 253 (51.5) | 55 (56.1) | |
Model 1 | 0.97 (0.80, 1.18) | 1.50 (0.95, 2.35) | 0.067 |
Model 2 | 0.98 (0.83, 1.19) | 1.50 (0.93, 2.41) | 0.073 |
Model 3 | 0.98 (0.80, 1.19) | 1.50 (0.93, 2.42) | 0.073 |
Women | |||
No. of participants | 881 | 224 | |
No. of cases (%) | 264 (30.0) | 82 (36.6) | |
Model 1 | 0.99 (0.85, 1.16) | 1.46 (1.08, 1.99) | 0.033 |
Model 2 | 1.01 (0.86, 1.20) | 1.59 (1.15, 2.19) | 0.042 |
Model 3 | 1.02 (0.86, 1.20) | 1.60 (1.16, 2.22) | 0.049 |
Hypertension | p | ||
---|---|---|---|
(−) | (+) | ||
HTLV-1 (+) | |||
No. of participants | 124 | 198 | |
No. of cases | 44 (35.5) | 93 (47.0) | |
Model 1 | Ref | 1.08 (0.65, 1.81) | 0.765 |
Model 2 | Ref | 1.08 (0.64, 1.83) | 0.771 |
Model 3 | Ref | 1.08 (0.63, 1.83) | 0.786 |
HTLV-1 (−) | |||
No. of participants | 497 | 875 | |
No. of cases | 141 (28.4) | 376 (43.0) | |
Model 1 | Ref | 1.48 (1.14, 1.93) | 0.003 |
Model 2 | Ref | 1.53 (1.17, 1.99) | 0.002 |
Model 3 | Ref | 1.51 (1.16, 1.97) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y.; Yamanashi, H.; Miyata, J.; Takada, M.; Noguchi, Y.; Honda, Y.; Nonaka, F.; Nakamichi, S.; Nagata, Y.; Maeda, T. Serum Calcium Level and Functional Atherosclerosis in Relation to Human T-Cell Leukemia Virus 1 Infection in Older Individuals. J. Vasc. Dis. 2023, 2, 324-337. https://doi.org/10.3390/jvd2030025
Shimizu Y, Yamanashi H, Miyata J, Takada M, Noguchi Y, Honda Y, Nonaka F, Nakamichi S, Nagata Y, Maeda T. Serum Calcium Level and Functional Atherosclerosis in Relation to Human T-Cell Leukemia Virus 1 Infection in Older Individuals. Journal of Vascular Diseases. 2023; 2(3):324-337. https://doi.org/10.3390/jvd2030025
Chicago/Turabian StyleShimizu, Yuji, Hirotomo Yamanashi, Jun Miyata, Midori Takada, Yuko Noguchi, Yukiko Honda, Fumiaki Nonaka, Seiko Nakamichi, Yasuhiro Nagata, and Takahiro Maeda. 2023. "Serum Calcium Level and Functional Atherosclerosis in Relation to Human T-Cell Leukemia Virus 1 Infection in Older Individuals" Journal of Vascular Diseases 2, no. 3: 324-337. https://doi.org/10.3390/jvd2030025
APA StyleShimizu, Y., Yamanashi, H., Miyata, J., Takada, M., Noguchi, Y., Honda, Y., Nonaka, F., Nakamichi, S., Nagata, Y., & Maeda, T. (2023). Serum Calcium Level and Functional Atherosclerosis in Relation to Human T-Cell Leukemia Virus 1 Infection in Older Individuals. Journal of Vascular Diseases, 2(3), 324-337. https://doi.org/10.3390/jvd2030025