The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms
Abstract
:1. Introduction
2. Phenotypic and Functional Properties of Pulmonary Vascular Endothelial and Smooth Muscle Cells
Marker | Name | Description | Associated Endothelial Cell Type |
---|---|---|---|
ICAM-1 | Intercellular adhesion molecule 1 | The protein encoded by ICAM-1 serves as a surface glycoprotein expressed on endothelial cells and immune system cells such as natural killer cells and dendritic cells. ICAM-1 is a therapeutic target for bosentan, which reduces inflammation in PH patients by decreasing ICAM-1 and interleukin-6 levels in blood [38,39,40]. | Canonical EC |
ICAM-2 | Intercellular adhesion molecule 2 | ICAM-2 mediates adhesive interactions important for antigen-specific immune response, NK-cell mediated clearance, lymphocyte recirculation, and other cellular interactions important for immune response and surveillance [40]. | Canonical EC |
PECAM-1/ CD31 | Platelet and endothelial cell adhesion molecule 1 | Protein encoded by PECAM-1 makes up endothelial cell intercellular junctions and contributes to the inflammatory cell accumulation that occurs during intima-media thickening and vascular remodeling. High levels of PECAM-1 are a potential indicator of response to therapeutic agent treprostinil [40,41]. | Canonical EC |
CD105 | Endoglin | The CD105 gene enables protein homodimerization and transforming growth factor beta binding activity [40]. | Canonical EC |
VCAM-1/ CD106 | Vascular adhesion molecule 1 | Ligands bind to this molecule on endothelial cell surfaces during inflammatory responses, mediating the adhesion of immune cells to vascular endothelium. The blocking of VCAM1 could serve as a potential therapeutic target because it has been shown to improve angiotensin II-induced hypertension and vascular dysfunction in mice [40,42]. | Canonical EC |
CD141 | Thrombomodulin | This gene encodes an endothelial-specific type I membrane receptor that binds thrombin. CD141 is essential in the regulation of blood coagulation and inflammation [40,43]. | Canonical EC |
MCAM | Melanoma cell adhesion molecule | MCAM is involved in vascular wound healing and acts upstream of or within angiogenesis [40]. | Canonical EC |
CD248 | Endosialin | CD248 is predicted to enable extracellular matrix binding activity and extracellular matrix protein binding activity. CD248 contributes to the remodeling of lung blood vessels that could result in PH [40,44]. | Canonical EC |
CD309 | Kinase insert domain receptor | CD309 functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting [40]. | Canonical EC |
CXCL16 | C-X-C motif chemokine ligand 16 | CXCL16 recruits and adheres to CXCR6. It is expressed on stimulated endothelial cells, smooth muscle cells, platelets, drndritic cells, and macrophages. It is involved in several processes, including cell growth, response to interferon-gamma, and response to tumor necrosis factor. In blood vessels, CXCL6+ endothelial cells recruit CXCR6+ T cells, and NK cells to vessel walls [40,45,46] | Canonical EC |
Tie-2 | TEK receptor tyrosine kinase | The ligand angiopoietin-1 (Ang-1) binds to this receptor and mediates embryonic vascular development. Rodents with constitutively expressed Ang-1 develop severe pulmonary hypertension. The Ang-1/Tie-2/serotonin pathway has shown therapeutic potential to treat PH because Ang-1 stimulates pulmonary arteriolar endothelial cells through the Tie-2 receptor. This results in the production of the smooth muscle mitogen serotonin, which is present in high levels in pulmonary hypertensive lung tissue from rodents [40,47]. | Canonical EC |
VG5Q | Angiogenic factor with G-patch and FHA domains 1 | VG5Q encodes angiogenic factor AGGF1 that promotes the proliferation of endothelial cells [40]. | Canonical EC |
EFNB2 | Ephrin B2 | EFNB2 is a potent regulator of endothelial cell activity, and controls cell migration and angiogenesis. Pulmonary vascular remodeling has been found to be dependent on EFNB2-induced Eph receptor forward signaling in smooth muscle cells, making postnatal modifications of EFNB2-mediated intercellular communication a potential therapeutic option for pulmonary vascular remodeling [40,48]. | Arterial EC |
SOX17 | SRY-box transcription factor 17 | SOX17 participates in the regulation of embryonic development. The downregulation of levels of this gene in pulmonary arterioles leads to PH development when exposed to hypoxic conditions and there is therapeutic potential in the resulting upregulation of HGF/c-Met signaling [40,49]. | Arterial EC |
BMX | BMX non-receptor tyrosine kinase | BMX encodes non-receptor tyrosine kinase involved in signal transduction in the arterial endothelium [40]. | Arterial EC |
SEMA3G | Semaphorin 3G | SEMA3G is involved in endothelial cell migration [40]. | Arterial EC |
HEY1 | Hes related family bHLH transcription factor with YRPW motif | HEY1 encodes nuclear protein that is a key downstream modulator of Notch signaling essential in cardiovascular development. Blocking the Notch-3-HEY1 signaling pathway in pulmonary arterial smooth muscle cells reduces pulmonary arterial pressure [50,51]. | Arterial EC |
LTBP4 | Latent transforming growth factor beta binding protein | LTBP4 encodes a protein that binds to transforming growth factor beta (TGFB) while it is being secreted and targeted to the extracellular matrix; defects can cause pulmonary abnormalities such as alveolar septation defects and emphysematous changes in lungs [40]. | Arterial EC |
FBLN5 | Fibulin 5 | FBLN5 is involved in the promotion of endothelial cell adhesion through the interaction of integrins and the Arg-Gly-Asp motif [40]. | Arterial EC |
GJA4 | Gap junction protein alpha 4 | GJA4 encodes a protein involved in gap junction. Mutations in GJA4 are associated with atherosclerosis and myocardial infarction [40]. | Arterial EC |
RGCC | Regulator of cell cycle | RGCC is involved in the regulation of cell cycle progression [40]. | Capillary EC |
SPARC | Secreted protein acidic and cysteine rich | SPARC is involved in extracellular matrix synthesis. SPARC silencing has been shown to reduce proliferation [52]. | Capillary EC |
SGK1 | Serum/glucocorticoid regulated kinase 1 | SGK1 contributes to the cellular response to stress by activating potassium, sodium, and chloride channels [40]. | Capillary EC |
CA4 | Carbonic anhydrase 4 | This gene encodes a protein member of the zinc metalloenzymes family that catalyzes the reversible hydration of carbon dioxide. The inhibition of carbonic anhydrases has been shown to improve pulmonary inflammation and experimental PH [40,53]. | Capillary EC |
NR2F2 | Nuclear receptor subfamily 2 group F member 2 | NR2F2 encodes for a protein member of the steroid thyroid hormone superfamily; plays a role in activating cell cycle genes [40]. | Venous EC |
ACKR1 | Atypical chemokine receptor 1 | This gene encodes a glycosylated membrane protein/chemokine receptor that binds and traffics chemokine ligands. ACKR1 is a receptor for chemokines involved in angiogenesis, metastasis, chemotaxis, and cellular retention signals [40,54]. | Venous EC |
SELP | Selectin P | SELP encodes a P-selectin protein that resides in the Weibel–Palade bodies in endothelial cells. The inhibition or deletion of P-selectin has therapeutic potential and has been shown to reverse pulmonary vascular remodeling and improve right ventricular function in mice [40,55]. | Venous EC |
PROX1 | Prospero homeobox1 | PROX1 encodes a protein that is a part of the homeobox transcription factor family and plays a role in embryonic lymphatic development [40]. | Lymphatic EC |
LYVE1 | Lymphatic vessel endothelial hyaluronan receptor 1 | LYVE1 encodes type I integral membrane glycoprotein that binds to soluble and immobilized hyaluronan [40]. | Lymphatic EC |
FLT4 | FMS related receptor tyrosine kinase 4 | FLT4 encodes tyrosine kinase receptor for vascular endothelial growth factors C and D [40]. | Lymphatic EC |
PDPN | Podoplanin | PDPN encodes a type-1 integral membrane glycoprotein that is distributed in various human tissues and is a proposed marker of lung injury that plays a role in the development of the heart, lungs, and lymphatic system [40]. | Lymphatic EC |
The Role of Pulmonary Vascular Tone in Health and Disease
3. Pulmonary Vascular Concerns in People Living with HIV
4. Role of HIV Proteins in Pulmonary Vascular Diseases
4.1. HIV Tat (Trans-Activator of Transcription)
4.2. HIV Nef
4.3. HIV gp120
5. Genetic Diversity of HIV: Implications in Virus Adaptation and Onset and Progression of Pulmonary Vascular Disease
6. Research Tools for Investigating HIV-Associated Pulmonary Vascular Comorbidities In Vivo
6.1. Non-Human Primate Models of HIV Pathogenesis and Severe Pulmonary Vascular Remodeling
6.2. Mice with Humanized Immune Systems (Hu-Mice) to Model HIV Diseases
6.3. Transgenic HIV Models
7. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; He, N. HIV and pulmonary hypertension: CD4 and viral load matter. Lancet Health Longev. 2021, 2, e389–e390. [Google Scholar] [CrossRef] [PubMed]
- Hemkens, L.G.; Bucher, H.C. HIV infection and cardiovascular disease. Eur. Heart J. 2014, 35, 1373–1381. [Google Scholar] [CrossRef]
- Yang, H.Y.; Beymer, M.R.; Suen, S.C. Chronic Disease Onset Among People Living with HIV and AIDS in a Large Private Insurance Claims Dataset. Sci. Rep. 2019, 9, 18514. [Google Scholar] [CrossRef] [PubMed]
- Gelpi, M.; Afzal, S.; Lundgren, J.; Ronit, A.; Roen, A.; Mocroft, A.; Gerstoft, J.; Lebech, A.M.; Lindegaard, B.; Kofoed, K.F.; et al. Higher Risk of Abdominal Obesity, Elevated Low-Density Lipoprotein Cholesterol, and Hypertriglyceridemia, but not of Hypertension, in People Living with Human Immunodeficiency Virus (HIV): Results from the Copenhagen Comorbidity in HIV Infection Study. Clin. Infect. Dis. 2018, 67, 579–586. [Google Scholar] [CrossRef]
- Bigna, J.J.; Kenne, A.M.; Asangbeh, S.L.; Sibetcheu, A.T. Prevalence of chronic obstructive pulmonary disease in the global population with HIV: A systematic review and meta-analysis. Lancet Glob. Health 2018, 6, e193–e202. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.H.; Loo, S.; Crawford, P.M.; Crane, H.M.; Leo, M.; DenOuden, P.; Houlberg, M.; Schmidt, M.; Quach, T.; Ruhs, S.; et al. Excess Clinical Comorbidity Among HIV-Infected Patients Accessing Primary Care in US Community Health Centers. Public Health Rep. 2018, 133, 109–118. [Google Scholar] [CrossRef]
- Morales, D.R.; Moreno-Martos, D.; Matin, N.; McGettigan, P. Health conditions in adults with HIV compared with the general population: A population-based cross-sectional analysis. eClinicalMedicine 2022, 47, 101392. [Google Scholar] [CrossRef]
- Legoux, B.; Piette, A.M.; Bouchet, P.F.; Landau, J.F.; Gepner, P.; Chapman, A.M. Pulmonary hypertension and HIV infection. Am. J. Med. 1990, 89, 122. [Google Scholar] [CrossRef]
- Bray, G.L.; Martin, G.R.; Chandra, R. Idiopathic pulmonary hypertension, hemophilia A, and infection with human immunodeficiency virus (HIV). Ann. Intern. Med. 1989, 111, 689–690. [Google Scholar] [CrossRef]
- Magnan, A.; Ravaux, I.; Reynaud, M.; Philip-Joet, F.; Saadjian, A.; Ottomani, A.; Garbe, L.; Arnaud, A. Pulmonary arterial hypertension secondary to microemboli caused by talc powder in a female heroin addict. Presse. Med. 1990, 19, 870–871. [Google Scholar]
- Coplan, N.L.; Shimony, R.Y.; Ioachim, H.L.; Wilentz, J.R.; Posner, D.H.; Lipschitz, A.; Ruden, R.A.; Bruno, M.S.; Sherrid, M.V.; Gaetz, H.; et al. Primary pulmonary hypertension associated with human immunodeficiency viral infection. Am. J. Med. 1990, 89, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Speich, R.; Jenni, R.; Opravil, M.; Pfab, M.; Russi, E.W. Primary pulmonary hypertension in HIV infection. Chest 1991, 100, 1268–1271. [Google Scholar] [CrossRef] [PubMed]
- Petitpretz, P.; Brenot, F.; Azarian, R.; Parent, F.; Rain, B.; Herve, P.; Simonneau, G. Pulmonary hypertension in patients with human immunodeficiency virus infection. Comparison with primary pulmonary hypertension. Circulation 1994, 89, 2722–2727. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.J.; Khan, I.A.; Mehta, R.N.; Sepkowitz, D.A. HIV-Related pulmonary hypertension: Analytic review of 131 cases. Chest 2000, 118, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.V.; Farber, H.W. Epoprostenol (prostacyclin) therapy in HIV-associated pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2000, 162, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Speich, R.; Jenni, R.; Opravil, M.; Jaccard, R. Regression of HIV-associated pulmonary arterial hypertension and long-term survival during antiretroviral therapy. Swiss Med. Wkly. 2001, 131, 663–665. [Google Scholar] [PubMed]
- Nunes, H.; Humbert, M.; Sitbon, O.; Morse, J.H.; Deng, Z.; Knowles, J.A.; Le Gall, C.; Parent, F.; Garcia, G.; Hervé, P.; et al. Prognostic factors for survival in human immunodeficiency virus–associated pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2003, 167, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Sitbon, O.; Lascoux-Combe, C.; Delfraissy, J.F.; Yeni, P.G.; Raffi, F.; De Zuttere, D.; Gressin, V.; Clerson, P.; Sereni, D.; Simonneau, G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 2008, 177, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, G.; Barjatya, H.; Bhakar, B.; Gothwal, S.K.; Jangir, T. To estimate prevalence of pulmonary arterial hypertension in HIV patients and its association with CD4 cell count. Clin. Epidemiol. Glob. Health 2024, 25, 101479. [Google Scholar] [CrossRef]
- Schwarze-Zander, C.; Pabst, S.; Hammerstingl, C.; Ohlig, J.; Wasmuth, J.; Boesecke, C.; Stoffel-Wagner, B.; Carstensen, A.; Nickenig, G.; Strassburg, C.; et al. Pulmonary hypertension in HIV infection: A prospective echocardiographic study. HIV Med. 2015, 16, 578–582. [Google Scholar] [CrossRef]
- Bigna, J.J.; Nansseu, J.R.; Noubiap, J.J. Pulmonary hypertension in the global population of adolescents and adults living with HIV: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 7837. [Google Scholar] [CrossRef] [PubMed]
- Denu, M.K.I.; Revoori, R.; Buadu, M.A.E.; Oladele, O.; Berko, K.P. Hypertension among persons living with HIV/AIDS and its association with HIV-related health factors. AIDS Res. Ther. 2024, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Harimenshi, D.; Niyongabo, T.; Preux, P.M.; Aboyans, V.; Desormais, I. Hypertension and associated factors in HIV-infected patients receiving antiretroviral treatment in Burundi: A cross-sectional study. Sci. Rep. 2022, 12, 20509. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Sundivakkam, P.; Smith, K.; Zeifman, A.; Drennan, A.; Yuan, J. Pathogenic Role of Store-Operated and Receptor-Operated Ca2+ Channels in Pulmonary Arterial Hypertension. J. Signal Transduct. 2012, 2012, 951497. [Google Scholar] [CrossRef] [PubMed]
- Tucker, W.D.; Arora, Y.; Mahajan, K. Anatomy, Blood Vessels. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gao, Y.; Chen, T.; Raj, J.U. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2016, 54, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, N.M.; Kuebler, W.M. Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr. Physiol. 2015, 5, 531–559. [Google Scholar] [PubMed]
- Gao, Y.; Galis, Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 179–185. [Google Scholar] [CrossRef]
- Müller-Redetzky, H.C.; Suttorp, N.; Witzenrath, M. Dynamics of pulmonary endothelial barrier function in acute inflammation: Mechanisms and therapeutic perspectives. Cell Tissue Res. 2014, 355, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Schupp, J.C.; Adams, T.S.; Cosme, C.; Raredon, M.S.B.; Yuan, Y.; Omote, N.; Poli, S.; Chioccioli, M.; Rose, K.A.; Manning, E.P.; et al. Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 2021, 144, 286–302. [Google Scholar] [CrossRef]
- Goncharov, N.V.; Nadeev, A.D.; Jenkins, R.O.; Avdonin, P.V. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxid. Med. Cell Longev. 2017, 2017, 9759735. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Gao, Y.; Deng, B.; Liu, K. Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst. Rev. 2013, 2013, Cd004434. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.H.; Dixon, R.A.F.; Willerson, J.T.; Ruan, K.H. Prostacyclin therapy for pulmonary arterial hypertension. Tex. Heart Inst. J. 2010, 37, 391–399. [Google Scholar] [PubMed]
- Hirakawa, K.; Aoki, T.; Tsuji, A.; Ogo, T. Pulmonary arterial hypertension sensitive to calcium channel blocker, but not advanced pulmonary hypertension treatment: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac351. [Google Scholar] [CrossRef] [PubMed]
- Chester, A.H.; Yacoub, M.H.; Moncada, S. Nitric oxide and pulmonary arterial hypertension. Glob. Cardiol. Sci. Prac. 2017, 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Almodovar, S.; Hsue, P.Y.; Morelli, J.; Huang, L.; Flores, S.C. Pathogenesis of HIV-associated pulmonary hypertension: Potential role of HIV-1 nef. Proc. Am. Thorac. Soc. 2011, 8, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Nahar, S.; Kanda, S.; Chatha, U.; A Odoma, V.; Pitliya, A.; AlEdani, E.M.; Bhangu, J.K.; Javed, K.; Manshahia, P.K.; Yu, A.K. Current Status of Endothelin Receptor Antagonists in Pulmonary Arterial Hypertension: A Combined Study Results and Pharmacology-Based Review. Cureus 2023, 15, e42748. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Kaminsky, S.; Hautefort, A.; Price, L.; Humbert, M.; Perros, F. Inflammation in pulmonary hypertension: What we know and what we could logically and safely target first. Drug Discov. Today 2014, 19, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.H.B.; Marin, F.L. Treating Inflammation Associated with Pulmonary Hypertension: An Overview of the Literature. Int. J. Gen. Med. 2022, 15, 1075–1083. [Google Scholar] [CrossRef]
- Gene [Internet]; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/gene/ (accessed on 18 April 2024).
- Clapham, K.R.; Rao, Y.; Sahay, S.; Sauler, M.; Lee, P.J.; Psotka, M.A.; Fares, W.H.; Ahmad, T. PECAM-1 is Associated WithOutcomes and Response to Treatment in Pulmonary Arterial Hypertension. Am. J. Cardiol. 2020, 127, 198–199. [Google Scholar] [CrossRef]
- Yin, L.; Bai, J.; Yu, W.J.; Liu, Y.; Li, H.H.; Lin, Q.Y. Blocking VCAM-1 Prevents Angiotensin II-Induced Hypertension and Vascular Remodeling in Mice. Front. Pharmacol. 2022, 13, 825459. [Google Scholar] [CrossRef]
- Isshiki, T.; Sakamoto, S.; Homma, S. Therapeutic Role of Recombinant Human Soluble Thrombomodulin for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Medicina 2019, 55, 172. [Google Scholar] [CrossRef] [PubMed]
- Barozzi, C.; Galletti, M.; Tomasi, L.; De Fanti, S.; Palazzini, M.; Manes, A.; Sazzini, M.; Galiè, N. A Combined Targeted and Whole Exome Sequencing Approach Identified Novel Candidate Genes Involved in Heritable Pulmonary Arterial Hypertension. Sci. Rep. 2019, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Collado, A.; Marques, P.; Escudero, P.; Rius, C.; Domingo, E.; Martinez-Hervás, S.; Real, J.T.; Ascaso, J.F.; Piqueras, L.; Sanz, M.J. Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc Res. 2018, 114, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Linke, B.; Meyer Dos Santos, S.; Picard-Willems, B.; Keese, M.; Harder, S.; Geisslinger, G.; Scholich, K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019, 122, 154081, Epub 2017 Jun 21. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.C.; Du, L.; Chu, D.; Cho, A.J.; Kido, M.; Wolf, P.L.; Jamieson, S.W.; Thistlethwaite, P.A. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 12331–12336. [Google Scholar] [CrossRef]
- Crnkovic, S.; Rittchen, S.; Jandl, K.; Gindlhuber, J.; Zabini, D.; Mutgan, A.C.; Valzano, F.; Boehm, P.M.; Hoetzenecker, K.; Toller, W.; et al. Divergent Roles of Ephrin-B2/EphB4 Guidance System in Pulmonary Hypertension. Hypertension 2023, 80, e17–e28. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Kim, S.H.; Yang, H.Y.; Kim, J.-H.; Schermuly, R.T.; Cho, Y.S.; Kang, H.; Park, J.-H.; Lee, E.; Park, H.; et al. Sox17 Deficiency Promotes Pulmonary Arterial Hypertension via HGF/c-Met Signaling. Circ. Res. 2022, 131, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, S.; Cheng, X.; Prado, E.; Yan, L.; Hu, J.; He, Q.; Lv, Y.; Du, L. Notch3 signaling activation in smooth muscle cells promotes extrauterine growth restriction-induced pulmonary hypertension. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Z.; Zhang, D.; Fu, L.; Wan, R.; Hong, K. Comparative Transcriptional Analysis of Pulmonary Arterial Hypertension Associated with Three Different Diseases. Front. Cell Dev. Biol. 2021, 9, 672159. [Google Scholar] [CrossRef]
- Veith, C.; Vartürk-Özcan, I.; Wujak, M.; Hadzic, S.; Wu, C.Y.; Knoepp, F.; Kraut, S.; Petrovic, A.; Gredic, M.; Pak, O.; et al. SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation 2022, 145, 916–933. [Google Scholar] [CrossRef]
- Hudalla, H.; Michael, Z.; Christodoulou, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Filatava, E.J.; Dieffenbach, P.; Fredenburgh, L.E.; Stearman, R.S.; Geraci, M.W.; et al. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2019, 61, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.S.; Volkman, B.F. Prospects for targeting ACKR1 in cancer and other diseases. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Sundd, P.; Kuebler, W.M. Smooth Muscle Cells: A Novel Site of P-Selectin Expression with Pathophysiological and Therapeutic Relevance in Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2019, 199, 1307–1309. [Google Scholar] [CrossRef] [PubMed]
- Rensen, S.S.M.; Doevendans, P.A.F.M.; van Eys, G.J.J.M. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 2007, 15, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Steucke, K.E.; Tracy, P.V.; Hald, E.S.; Hall, J.L.; Alford, P.W. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties. J. Biomech. 2015, 48, 3044–3051. [Google Scholar] [CrossRef] [PubMed]
- Oosterhoff, L.A.; Kruitwagen, H.S.; van Wolferen, M.E.; van Balkom, B.W.; Mokry, M.; Lansu, N.; Dungen, N.A.v.D.; Penning, L.C.; Spanjersberg, T.C.; de Graaf, J.W.; et al. Characterization of Endothelial and Smooth Muscle Cells from Different Canine Vessels. Front. Physiol. 2019, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Groot, A.C.G.D.; DeRuiter, M.C.; Bergwerff, M.; Poelmann, R.E. Smooth Muscle Cell Origin and Its Relation to Heterogeneity in Development and Disease. Arter. Thromb. Vasc. Biol. 1999, 19, 1589–1594. [Google Scholar] [CrossRef]
- Cao, G.; Xuan, X.; Hu, J.; Zhang, R.; Jin, H.; Dong, H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun. Signal. 2022, 20, 1–22. [Google Scholar] [CrossRef]
- Tierney, J.W.; Evans, B.C.; Cheung-Flynn, J.; Wang, B.; Colazo, J.M.; Polcz, M.E.; Cook, R.S.; Brophy, C.M.; Duvall, C.L. Therapeutic MK2 inhibition blocks pathological vascular smooth muscle cell phenotype switch. J. Clin. Investig. 2021, 6. [Google Scholar] [CrossRef]
- Zhao, D.; Li, J.; Xue, C.; Feng, K.; Liu, L.; Zeng, P.; Wang, X.; Chen, Y.; Li, L.; Zhang, Z.; et al. TL1A inhibits atherosclerosis in apoE-deficient mice by regulating the phenotype of vascular smooth muscle cells. J. Biol. Chem. 2020, 295, 16314–16327. [Google Scholar] [CrossRef]
- Yang, L.; Wan, N.; Gong, F.; Wang, X.; Feng, L.; Liu, G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front. Cell Dev. Biol. 2023, 11, 1132060. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Yerabolu, D.; Weiss, A.; Kojonazarov, B.; Boehm, M.; Schlueter, B.C.; Ruppert, C.; Günther, A.; Jonigk, D.; Grimminger, F.; Ghofrani, H.A.; et al. Targeting Jak–Stat Signaling in Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2021, 64, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Teng, X.; Zhang, L.; Chen, J.; Liu, Z.; Chen, X.; Zhao, S.; Yang, S.; Feng, J.; Yan, X. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat. Commun. 2019, 10, 3551. [Google Scholar] [CrossRef] [PubMed]
- Sutendra, G.; Dromparis, P.; Wright, P.; Bonnet, S.; Haromy, A.; Hao, Z.; McMurtry, M.S.; Michalak, M.; Vance, J.E.; Sessa, W.C.; et al. The role of nogo and the mitochondria–Endoplasmic reticulum unit in pulmonary hypertension. Sci. Transl. Med. 2011, 3, 88ra55. [Google Scholar] [CrossRef]
- de Frutos, S.; Spangler, R.; Alò, D.; Bosc, L.V. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J. Biol. Chem. 2007, 282, 15081–15089. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, G.; Wang, H.; Yao, P. Inhibition of KIF23 Alleviates IPAH by Targeting Pyroptosis and Proliferation of PASMCs. Int. J. Mol. Sci. 2022, 23, 4436. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Barbero, N.; Gutiérrez-Muñoz, C.; Blanco-Colio, L.M. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int. J. Mol. Sci. 2021, 22, 7284. [Google Scholar] [CrossRef] [PubMed]
- Asosingh, K.; Comhair, S.; Mavrakis, L.; Xu, W.; Horton, D.; Taylor, I.; Tkachenko, S.; Hu, B.; Erzurum, S. Single-cell transcriptomic profile of human pulmonary artery endothelial cells in health and pulmonary arterial hypertension. Sci. Rep. 2021, 11, 14714. [Google Scholar] [CrossRef]
- Garrison, A.T.; Bignold, R.E.; Wu, X.; Johnson, J.R. Pericytes: The lung-forgotten cell type. Front. Physiol. 2023, 14, 1150028. [Google Scholar] [CrossRef]
- Jackson, W.F. Ion Channels and Vascular Tone. Hypertension 2000, 35 Pt 2, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.C.; Hyde, D.M.; Weibel, E.R. Lung Structure and the Intrinsic Challenges of Gas Exchange. Compr. Physiol. 2016, 6, 827–895. [Google Scholar] [PubMed]
- Khan, M.; Bordes, S.; Murray, I.; Sharma, S. Physiology, Pulmonary Vasoconstriction. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Wagner, P.D.; Laravuso, R.B.; Uhl, R.R.; West, J.B. Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100 per cent O2. J. Clin. Investig. 1974, 54, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.D. The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases. Eur. Respir. J. 2015, 45, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Madden, J.A.; Dawson, C.A.; Harder, D.R. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol. 1985, 59, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Dunham-Snary, K.J.; Wu, D.; Sykes, E.A.; Thakrar, A.; Parlow, L.R.G.; Mewburn, J.D.; Parlow, J.L.; Archer, S.L. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 2017, 151, 181–192. [Google Scholar] [CrossRef]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef]
- Dorrington, K.L.; Balanos, G.M.; Talbot, N.P.; Robbins, P.A. Extent to which pulmonary vascular responses to PCO2 and PO2 play a functional role within the healthy human lung. J. Appl. Physiol. 2010, 108, 1084–1096. [Google Scholar] [CrossRef]
- Ramirez, M.I.; Amorim, M.G.; Gadelha, C.; Milic, I.; Welsh, J.A.; Freitas, V.M.; Nawaz, M.; Akbar, N.; Couch, Y.; Makin, L.; et al. Technical challenges of working with extracellular vesicles. Nanoscale 2018, 10, 881–906. [Google Scholar] [CrossRef]
- Nawaz, M.; Shah, N.; Zanetti, B.R.; Maugeri, M.; Silvestre, R.N.; Fatima, F.; Neder, L.; Valadi, H. Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018, 7, 167. [Google Scholar] [CrossRef]
- Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma 2014, 23 (Suppl. S1), S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Jaminon, A.; Reesink, K.; Kroon, A.; Schurgers, L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int. J. Mol. Sci. 2019, 20, 5694. [Google Scholar] [CrossRef]
- Hussain, A.; Suleiman, M.; George, S.; Loubani, M.; Morice, A. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth. Open Cardiovasc. Med. J. 2017, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tarry, D.; Powell, M. Hypoxic pulmonary vasoconstriction. BJA Educ. 2017, 17, 208–213. [Google Scholar] [CrossRef]
- Lacolley, P.; Regnault, V.; Segers, P.; Laurent, S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol. Rev. 2017, 97, 1555–1617. [Google Scholar] [CrossRef] [PubMed]
- Al Tameemi, W.; Dale, T.P.; Al-Jumaily, R.M.K.; Forsyth, N.R. Hypoxia-Modified Cancer Cell Metabolism. Front. Cell Dev. Biol. 2019, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Terraneo, L.; Paroni, R.; Bianciardi, P.; Giallongo, T.; Carelli, S.; Gorio, A.; Samaja, M. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol. 2017, 11, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.G.; Panchalingam, K.M.; Anjo, S.I.; Manadas, B.; Pereira, R.; Sousa, N.; Salgado, A.J.; Behie, L.A. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res. Ther. 2015, 6, 133. [Google Scholar] [CrossRef]
- Makino, A.; Firth, A.L.; Yuan, J.X. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr. Physiol. 2011, 1, 1555–1602. [Google Scholar]
- Somlyo, A.P.; Somlyo, A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 2003, 83, 1325–1358. [Google Scholar] [CrossRef]
- Collier, A.C.; Coombs, R.W.; Schoenfeld, D.A.; Bassett, R.L.; Timpone, J.; Baruch, A.; Jones, M.; Facey, K.; Whitacre, C.; McAuliffe, V.J.; et al. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N. Engl. J. Med. 1996, 334, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Jacobson, L.P.; Cohen, M.; French, A.; Phair, J.; Muñoz, A. Cause-Specific Life Expectancies After 35 Years of Age for Human Immunodeficiency Syndrome-Infected and Human Immunodeficiency Syndrome-Negative Individuals Followed Simultaneously in Long-term Cohort Studies, 1984–2008. Am. J. Epidemiol. 2013, 177, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, A.; Nozza, S.; Muss, C.; Celesia, B.M.; Carli, F.; Piconi, S.; De Socio, G.V.; Cattelan, A.M.; Orofino, G.; Ripamonti, D.; et al. Ageing with HIV: A multidisciplinary review. Infection 2015, 43, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Le Marec, F.; Leleux, O.; Gerard, Y.; Neau, D.; Lazaro, E.; Duffau, P.; Caubet, O.; Vandenhende, M.A.; Mercie, P.; et al. Evolution of comorbidities in people living with HIV between 2004 and 2014: Cross-sectional analyses from ANRS CO3 Aquitaine cohort. BMC Infect. Dis. 2020, 20, 850. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, M.E.; Kunisaki, K.M.; Morris, A. Pulmonary disease in HIV-infected adults in the era of antiretroviral therapy. AIDS 2018, 32, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Morrell, N.W.; Adnot, S.; Archer, S.L.; Dupuis, J.; Lloyd Jones, P.; MacLean, M.R.; McMurtry, I.F.; Stenmark, K.R.; Thistlethwaite, P.A.; Weissmann, N.; et al. Cellular and molecular basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009, 54 (Suppl. S1), S20–S31. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, H.; Barnett, C. HIV-associated pulmonary hypertension. Curr. Opin. HIV AIDS 2017, 12, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.; Badesch, D.; Gibbs, J.S.R.; Gopalan, D.; Khanna, D.; Manes, A.; Oudiz, R.; Satoh, T.; Torres, F.; Torbicki, A. Diagnosis of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801904. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar]
- Augustine, D.X.; Coates-Bradshaw, L.D.; Willis, J.; Harkness, A.; Ring, L.; Grapsa, J.; Coghlan, G.; Kaye, N.; Oxborough, D.; Robinson, S.; et al. Echocardiographic assessment of pulmonary hypertension: A guideline protocol from the British Society of Echocardiography. Echo Res. Prac. 2018, 5, G11–G24. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Gulick, P.G. HIV Disease Current Practice. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Klasse, P.J. The molecular basis of HIV entry. Cell Microbiol. 2012, 14, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, D.J.; Miranda, D.; Marsden, M.D.; Dizon, T.M.A.; Bontemps, J.R.; Davila, S.J.; Del Mundo, L.E.; Ha, T.; Senaati, A.; Zack, J.A.; et al. Disruption of Type I Interferon Induction by HIV Infection of T Cells. PLoS ONE 2015, 10, e0137951. [Google Scholar] [CrossRef]
- Devadoss, D.; Singh, S.P.; Acharya, A.; Do, K.C.; Periyasamy, P.; Manevski, M.; Mishra, N.; Tellez, C.S.; Ramakrishnan, S.; Belinsky, S.A.; et al. HIV-1 Productively Infects and Integrates in Bronchial Epithelial Cells. Front. Cell Infect. Microbiol. 2021, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Schilthuis, M.; Verkaik, S.; Walhof, M.; Philipose, A.; Harlow, O.; Kamp, D.; Kim, B.R.; Shen, A. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4+ T cells. Virol. J. 2018, 15, 152. [Google Scholar] [CrossRef] [PubMed]
- Eugenin, E.A.; Morgello, S.; Klotman, M.E.; Mosoian, A.; Lento, P.A.; Berman, J.W.; Schecter, A.D. Human Immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro: Implications for the pathogenesis of HIV-mediated vascular disease. Am. J. Pathol. 2008, 172, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; McMichael, A. The T-cell response to HIV. Cold Spring Harb Perspect. Med. 2012, 2, a007054. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, M.; Pandhare, J.; Dash, C. Immune Control of HIV. J. Life Sci. 2019, 1, 4–37. [Google Scholar] [CrossRef]
- Lv, T.; Cao, W.; Li, T. HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J. Immunol. Res. 2021, 2021, 7316456. [Google Scholar] [CrossRef]
- Cicalini, S.; Almodovar, S.; Grilli, E.; Flores, S. Pulmonary hypertension and human immunodeficiency virus infection: Epidemiology, pathogenesis, and clinical approach. Clin. Microbiol. Infect. 2011, 17, 25–33. [Google Scholar] [CrossRef]
- Hassoun, P.M.; Mouthon, L.; Barberà, J.A.; Eddahibi, S.; Flores, S.C.; Grimminger, F.; Jones, P.L.; Maitland, M.L.; Michelakis, E.D.; Morrell, N.W.; et al. Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol. 2009, 54 (Suppl. S1), S10–S19. [Google Scholar] [CrossRef]
- Morrell, N.W.; Chang, C.; Long, L.L.; Soon, E.; Jones, D.; Machado, R.; Treacy, C.; Toshner, M.; Campbell, K.; Riding, A.; et al. Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension. Circulation 2012, 126, 1099–1109. [Google Scholar]
- Tomaszewski, M.; Bębnowska, D.; Hrynkiewicz, R.; Dworzyński, J.; Niedźwiedzka-Rystwej, P.; Kopeć, G.; Grywalska, E. Role of the Immune System Elements in Pulmonary Arterial Hypertension. J. Clin. Med. 2021, 10, 3757. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.L.; Gunningham, S.P.; Clare, G.C.; Hayman, M.W.; Smith, M.; Frampton, C.M.; A Robinson, B.; Troughton, R.W.; EL Beckert, L. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension. Respirology 2013, 18, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Savai, R.; Pullamsetti, S.S.; Kolbe, J.; Bieniek, E.; Voswinckel, R.; Fink, L.; Scheed, A.; Ritter, C.; Dahal, B.K.; Vater, A.; et al. Immune and Inflammatory Cell Involvement in the Pathology of Idiopathic Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Frankel, A.D.; Young, J.A. HIV-1: Fifteen proteins and an RNA. Annu. Rev. Biochem. 1998, 67, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Momany, C.; Kovari, L.C.; Prongay, A.J.; Keller, W.; Gitti, R.K.; Lee, B.M.; Gorbalenya, A.E.; Tong, L.; McClure, J.; Ehrlich, L.S.; et al. Crystal structure of dimeric HIV-1 capsid protein. Nat. Struct. Mol. Biol. 1996, 3, 763–770. [Google Scholar] [CrossRef]
- Aquaro, S.; Borrajo, A.; Pellegrino, M.; Svicher, V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence 2020, 11, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.S.; Hughes, S.H. HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2012, 2, a006882. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.M.; Kelleher, A.D.; Cooper, D.A. Timing of the components of the HIV life cycle in productively infected CD4+ T cells in a population of HIV-infected individuals. J. Virol. 2011, 85, 10798–10805. [Google Scholar] [CrossRef]
- Craigie, R.; Ramcharan, J.; Skalka, A.M.; Iordanskiy, S.N.; I Bukrinsky, M.; Thys, W.; Busschots, K.; McNeely, M.; Voet, A.; Christ, F.; et al. The molecular biology of HIV integrase. Future Virol. 2012, 7, 679–686. [Google Scholar] [CrossRef]
- Burniston, M.T.; Cimarelli, A.; Colgan, J.; Curtis, S.P.; Luban, J. Human immunodeficiency virus type 1 gag polyprotein multimerization requires the nucleocapsid domain and rna and is promoted by the capsid-dimer interface and the basic region of matrix protein. J. Virol. 1999, 73, 8527–8540. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Eum, S.Y.; Nath, A.; Toborek, M. Estrogen-mediated protection against HIV Tat protein-induced inflammatory pathways in human vascular endothelial cells. Cardiovasc. Res. 2004, 63, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Manes, T.L.; Simenauer, A.; Geohring, J.L.; Flemming, J.; Brehm, M.; Cota-Gomez, A. The HIV-Tat protein interacts with Sp3 transcription factor and inhibits its binding to a distal site of the sod2 promoter in human pulmonary artery endothelial cells. Free Radic. Biol. Med. 2020, 147, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, R.A.; Calnan, B.J.; Frankel, A.D.; Sharp, P.A. HIV-1 Tat protein trans-activates transcription in vitro. Cell 1990, 63, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chai, L.; Fasae, M.B.; Bai, Y. The role of HIV Tat protein in HIV-related cardiovascular diseases. J. Transl. Med. 2018, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.L.; Gadipatti, R.; Lane, K.B.; Shepherd, V.L. HIV-1 TAT represses transcription of the bone morphogenic protein receptor-2 in U937 monocytic cells. J. Leukoc. Biol. 2005, 79, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chelvanambi, S.; Bogatcheva, N.V.; Bednorz, M.; Agarwal, S.; Maier, B.; Alves, N.J.; Li, W.; Syed, F.; Saber, M.M.; Dahl, N.; et al. HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death. Am. J. Respir. Cell Mol. Biol. 2019, 60, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Buffalo, C.Z.; Iwamoto, Y.; Hurley, J.H.; Ren, X. How HIV Nef Proteins Hijack Membrane Traffic to Promote Infection. J. Virol. 2019, 93, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Green, L.A.; Yi, R.; Petrusca, D.; Wang, T.; Elghouche, A.; Gupta, S.K.; Petrache, I.; Clauss, M.A.; Koike, K.; Beatman, E.L.; et al. HIV envelope protein gp120-induced apoptosis in lung microvascular endothelial cells by concerted upregulation of EMAP II and its receptor, CXCR3. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 306, L372–L382. [Google Scholar] [CrossRef]
- Kanmogne, G.D.; Primeaux, C.; Grammas, P. Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HIV-1 gp120 proteins. Biochem. Biophys. Res. Commun. 2005, 333, 1107–1115. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Zhou, H.H.; Mao, X.Y. Emerging Roles of 5-Lipoxygenase Phosphorylation in Inflammation and Cell Death. Oxidative Med. Cell Longev. 2019, 2019, 2749173. [Google Scholar] [CrossRef]
- Almodovar, S.; Wade, B.E.; Porter, K.M.; Smith, J.M.; Lopez-Astacio, R.A.; Bijli, K.; Kang, B.Y.; Cribbs, S.K.; Guidot, D.M.; Molehin, D.; et al. HIV X4 Variants Increase Arachidonate 5-Lipoxygenase in the Pulmonary Microenvironment and are associated with Pulmonary Arterial Hypertension. Sci. Rep. 2020, 10, 11696. [Google Scholar] [CrossRef] [PubMed]
- Suh, A.J.; Suzuki, D.I.; Gychka, S.G.; Brelidze, T.I.; Suzuki, Y.J. gp120 Envelope Glycoproteins of HIV-1 Group M Subtype A and Subtype B Differentially Affect Gene Expression in Human Vascular Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 3536. [Google Scholar] [CrossRef] [PubMed]
- Zanini, F.; Neher, R.A. Quantifying Selection against Synonymous Mutations in HIV-1 env Evolution. J. Virol. 2013, 87, 11843–11850. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.M.; Siqueira, J.D.; Garrido, M.M.; Botelho, O.M.; Prellwitz, I.M.; Ribeiro, S.R.; Soares, E.A.; Soares, M.A. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017, 9, 392. [Google Scholar] [CrossRef]
- Mansky, L.M.; Temin, H.M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 1995, 69, 5087–5094. [Google Scholar] [CrossRef]
- Rawson, J.M.O.; Landman, S.R.; Reilly, C.S.; Mansky, L.M. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015, 12, 60. [Google Scholar] [CrossRef]
- Cuevas, J.M.; Geller, R.; Garijo, R.; López-Aldeguer, J.; Sanjuán, R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol. 2015, 13, e1002251. [Google Scholar] [CrossRef]
- Hemelaar, J. Implications of HIV diversity for the HIV-1 pandemic. J. Infect. 2013, 66, 391–400. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, L.; Su, B.; Li, H.; Li, Z.; Han, J.; Zhang, Y.; Zhang, T.; Li, T.; Wu, H.; et al. The Genetic Diversity of HIV-1 Quasispecies Within Primary Infected Individuals. AIDS Res. Hum. Retroviruses 2019, 36, 440–449. [Google Scholar] [CrossRef]
- Fonjungo, P.N.; Mpoudi, E.N.; Torimiro, J.N.; Alemnji, G.A.; Eno, L.T.; Lyonga, E.J.; Nkengasong, J.N.; Lal, R.B.; Rayfield, M.; Kalish, M.L.; et al. Human Immunodeficiency Virus Type 1 group M protease in cameroon: Genetic diversity and protease inhibitor mutational features. J. Clin. Microbiol. 2002, 40, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Almodovar, S.; Knight, R.; Allshouse, A.A.; Roemer, S.; Lozupone, C.; McDonald, D.; Widmann, J.; Voelkel, N.F.; Shelton, R.J.; Suarez, E.B.; et al. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res. Hum. Retroviruses 2012, 28, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Mandell, C.P.; Reyes, R.A.; Cho, K.; Sawai, E.T.; Fang, A.L.; Schmidt, K.A.; Luciw, P.A. SIV/HIV nef recombinant virus (SHIVnef) produces simian aids in rhesus macaques. Virology 1999, 265, 235–251. [Google Scholar] [CrossRef]
- Geyer, M.; Fackler, O.T.; Peterlin, B.M. Structure–function relationships in HIV-1 Nef. EMBO Rep. 2001, 2, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ma, J.; Ding, D.; Ma, Y.; Wei, Y.; Jing, Z. Experimental animal models of pulmonary hypertension: Development and challenges. Anim. Model. Exp. Med. 2022, 5, 207–216. [Google Scholar] [CrossRef]
- Dignam, J.P.; Scott, T.E.; Kemp-Harper, B.K.; Hobbs, A.J. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br. J. Pharmacol. 2022, 179, 811–837. [Google Scholar] [CrossRef]
- Rodriguez-Irizarry, V.J.; Schneider, A.C.; Ahle, D.; Smith, J.M.; Suarez-Martinez, E.B.; Salazar, E.A.; Mims, B.M.; Rasha, F.; Moussa, H.; Moustaïd-Moussa, N.; et al. Mice with humanized immune system as novel models to study HIV-associated pulmonary hypertension. Front. Immunol. 2022, 13, 936164. [Google Scholar] [CrossRef]
- Klatt, N.R.; Silvestri, G.; Hirsch, V. Nonpathogenic simian immunodeficiency virus infections. Cold Spring Harb. Perspect. Med. 2012, 2, a007153. [Google Scholar] [CrossRef] [PubMed]
- Jasinska, A.J.; Apetrei, C.; Pandrea, I. Walk on the wild side: SIV infection in African non-human primate hosts—From the field to the laboratory. Front. Immunol. 2022, 13, 1060985. [Google Scholar] [CrossRef]
- Apetrei, C.; Gaufin, T.; Brocca-Cofano, E.; Sivanandham, R.; Sette, P.; He, T.; Sivanandham, S.; Sosa, N.M.; Martin, K.J.; Raehtz, K.D.; et al. T cell activation is insufficient to drive SIV disease progression. JCI Insight 2023, 8, e161111. [Google Scholar] [CrossRef]
- Le Hingrat, Q.; Sette, P.; Xu, C.; Rahmberg, A.R.; Tarnus, L.; Annapureddy, H.; Kleinman, A.; Brocca-Cofano, E.; Sivanandham, R.; Sivanandham, S.; et al. Prolonged experimental CD4+ T-cell depletion does not cause disease progression in SIV-infected African green monkeys. Nat. Commun. 2023, 14, 979. [Google Scholar] [CrossRef] [PubMed]
- Sharer, L.R.; Baskin, G.B.; Cho, E.S.; Murphey-Corb, M.; Blumberg, B.M.; Epstein, L.G. Comparison of simian immunodeficiency virus and human immunodeficiency virus encephalitides in the immature host. Ann. Neurol. 1988, 23, S108–S112. [Google Scholar] [CrossRef] [PubMed]
- Baier-Bitterlich, G.; Tretiakova, A.; Richardson, M.; Khalili, K.; Jameson, B.; Rappaport, J. Structure and function of HIV-1 and SIV Tat proteins based on carboxy-terminal truncations, chimeric Tat constructs, and NMR modeling. Biomed. Pharmacother. 1998, 52, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Marecki, J.; Cool, C.; Voelkel, N.; Luciw, P.; Flores, S. Evidence for vascular remodeling in the lungs of macaques infected with simian immunodeficiency Virus/HIV nef recombinant virus. Chest 2005, 128 (Suppl. S6), 621S–622S. [Google Scholar] [CrossRef] [PubMed]
- Marecki, J.C.; Cool, C.D.; Parr, J.E.; Beckey, V.E.; Luciw, P.A.; Tarantal, A.F.; Carville, A.; Shannon, R.P.; Cota-Gomez, A.; Tuder, R.M.; et al. HIV-1 nef is associated with complex pulmonary vascular lesions in SHIV-nef–infected macaques. Am. J. Respir. Crit. Care Med. 2006, 174, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Almodovar, S.; Swanson, J.; Giavedoni, L.D.; Kanthaswamy, S.; Long, C.S.; Voelkel, N.F.; Edwards, M.G.; Folkvord, J.M.; Connick, E.; Westmoreland, S.V.; et al. Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol. 2018, 31, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Patel, K.; Almodóvar, S.; Tuder, R.M.; Flores, S.C.; Sehgal, P.B.; Kato, S.; Zhang, R.; Roberts, J.D.; Yang, Y.M.; et al. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: Implications in pulmonary arterial hypertension. Am. J. Physiol. Circ. Physiol. 2011, 300, H1141–H1158. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, P.B.; Mukhopadhyay, S.; Patel, K.; Xu, F.; Almodóvar, S.; Tuder, R.M.; Flores, S.C.; Kato, S.; Chen, J.; Cornog, K.H.; et al. Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 297, L729–L737. [Google Scholar] [CrossRef]
- George, M.P.; Champion, H.C.; Simon, M.; Guyach, S.; Tarantelli, R.; Kling, H.M.; Brower, A.; Janssen, C.; Murphy, J.; Carney, J.P.; et al. Physiologic changes in a nonhuman primate model of HIV-associated pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2013, 48, 374–381. [Google Scholar] [CrossRef]
- Tarantelli, R.A.; Schweitzer, F.; Simon, M.A.; Vanderpool, R.R.; Christman, I.; Rayens, E.; Kling, H.M.; Zullo, T.; Carney, J.P.; Lopresti, B.J.; et al. Longitudinal Evaluation of Pulmonary Arterial Hypertension in a Rhesus Macaque (Macaca mulatta) Model of HIV Infection. Comp. Med. 2018, 68, 461–473. [Google Scholar] [CrossRef]
- Zhang, L.; Su, L. HIV-1 immunopathogenesis in humanized mouse models. Cell Mol. Immunol. 2012, 9, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Shultz, L.D.; Ishikawa, F.; Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 2007, 7, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Denton, P.W.; Watkins, R.L.; Krisko, J.F.; Nochi, T.; Foster, J.L.; Garcia, J.V. Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4+CD8+ thymocytes. Retrovirology 2012, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Denton, P.W.; Olesen, R.; Choudhary, S.K.; Archin, N.M.; Wahl, A.; Swanson, M.D.; Chateau, M.; Nochi, T.; Krisko, J.F.; Spagnuolo, R.A.; et al. Generation of HIV latency in humanized blt mice. J. Virol. 2012, 86, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Gawron, M.A.; Duval, M.; Carbone, C.; Jaiswal, S.; Wallace, A.; Martin, J.C., 3rd; Dauphin, A.; Brehm, M.A.; Greiner, D.L.; Shultz, L.D.; et al. Human Anti-HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1. J. Immunol. 2019, 202, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Vitali, S.H.; Hansmann, G.; Rose, C.; Fernandez-Gonzalez, A.; Scheid, A.; Mitsialis, S.A.; Kourembanas, S. The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: Long-term follow-up. Pulm. Circ. 2014, 4, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, K.R.; Meyrick, B.; Galie, N.; Mooi, W.J.; McMurtry, I.F. Animal models of pulmonary arterial hypertension: The hope for etiological discovery and pharmacological cure. Am. J. Physiol. Cell Mol. Physiol. 2009, 297, L1013–L1032. [Google Scholar] [CrossRef] [PubMed]
- Sakao, S.; Tatsumi, K. The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 2010, 81, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Arroyo, J.G.; Farkas, L.; Alhussaini, A.A.; Farkas, D.; Kraskauskas, D.; Voelkel, N.F.; Bogaard, H.J. The monocrotaline model of pulmonary hypertension in perspective. Am. J. Physiol. Cell Mol. Physiol. 2011, 302, L363–L369. [Google Scholar] [CrossRef]
- Carman, B.L.; Predescu, D.N.; Machado, R.; Predescu, S.A. Plexiform Arteriopathy in Rodent Models of Pulmonary Arterial Hypertension. Am. J. Pathol. 2019, 189, 1133–1144. [Google Scholar] [CrossRef]
- Abe, K.; Toba, M.; Alzoubi, A.; Ito, M.; Fagan, K.A.; Cool, C.D.; Voelkel, N.F.; McMurtry, I.F.; Oka, M. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 2010, 121, 2747–2754. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.; Abdelwahab, S.; Sadowska, M.; Huso, D.; Neal, A.; Ahearn, A.; Bryant, J.; Gallo, R.C.; Lewis, G.K.; Reitz, M. HIV-1 transgenic rats develop T cell abnormalities. Virology 2004, 321, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.; Sadowska, M.; Denaro, F.; Rao, S.; Foulke, J.; Hayes, N.; Jones, O.; Doodnauth, D.; Davis, H.; Sill, A.; et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl. Acad. Sci. USA 2001, 98, 9271–9276. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.K.; Lucero, J.; Herbert, L.; Liu, Y.; Naik, J.S. Human immunodeficiency virus transgenic rats exhibit pulmonary hypertension. Am. J. Physiol. Cell Mol. Physiol. 2011, 301, L315–L326. [Google Scholar] [CrossRef]
- Fan, X.; Joshi, P.C.; Koval, M.; Guidot, D.M. Chronic alcohol ingestion exacerbates lung epithelial barrier dysfunction in hiv-1 transgenic rats. Alcohol. Clin. Exp. Res. 2011, 35, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, P.; Spikes, L.; Allen, J.; Gupta, V.G.; Sharma, H.; Gillcrist, M.; de Oca, J.M.; O’brien-Ladner, A.; Dhillon, N.K. Effect of Cocaine on Pulmonary Vascular Remodeling and Hemodynamics in Human Immunodeficiency Virus–Transgenic Rats. Am. J. Respir. Cell Mol. Biol. 2016, 55, 201–212. [Google Scholar] [CrossRef]
- Chinnappan, M.; Mohan, A.; Agarwal, S.; Dalvi, P.; Dhillon, N.K. Network of MicroRNAs Mediate Translational Repression of Bone Morphogenetic Protein Receptor-2: Involvement in HIV-Associated Pulmonary Vascular Remodeling. J. Am. Heart Assoc. 2018, 7, e008472. [Google Scholar] [CrossRef] [PubMed]
- Mondejar-Parreño, G.; Morales-Cano, D.; Barreira, B.; Callejo, M.; Ruiz-Cabello, J.; Moreno, L.; Esquivel-Ruiz, S.; Mathie, A.; Butrous, G.; Perez-Vizcaino, F.; et al. HIV transgene expression impairs K+ channel function in the pulmonary vasculature. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L711–L723. [Google Scholar] [CrossRef]
- Medrano-Garcia, S.; Morales-Cano, D.; Barreira, B.; Vera-Zambrano, A.; Kumar, R.; Kosanovic, D.; Schermuly, R.T.; Graham, B.B.; Perez-Vizcaino, F.; Mathie, A.; et al. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022, 11, 2414. [Google Scholar] [CrossRef]
Name | Description |
---|---|
α-smooth muscle actin | Plays a role in cell motility, structure, and integrity |
Myosin heavy chain 11 | Predicted to act upstream of or within smooth muscle contraction |
SM22α | Encoded protein is structurally similar to calponin, an actin-binding protein |
SM Calponin | Predicted to be involved in negative regulation of vascular associated smooth muscle cell proliferation |
H-caldesmon | Enables actin binding activity. Involved in actin filament bundle assembly and positive regulation of protein binding activity |
Smoothelin | Structural protein found exclusively in contractile smooth muscle cells |
Telokin | Stabilizes unphosphorylated myosin filaments in smooth muscle cells |
Metavinculin | Encodes cytoskeletal protein associated with cell–cell and cell–matrix junctions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, A.K.; Almodovar, S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. J. Vasc. Dis. 2024, 3, 174-200. https://doi.org/10.3390/jvd3020015
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. Journal of Vascular Diseases. 2024; 3(2):174-200. https://doi.org/10.3390/jvd3020015
Chicago/Turabian StyleGarcia, Amanda K., and Sharilyn Almodovar. 2024. "The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms" Journal of Vascular Diseases 3, no. 2: 174-200. https://doi.org/10.3390/jvd3020015
APA StyleGarcia, A. K., & Almodovar, S. (2024). The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. Journal of Vascular Diseases, 3(2), 174-200. https://doi.org/10.3390/jvd3020015