Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy
Abstract
:1. Introduction
2. Exosome Biology: From Natural Vesicles to Engineered Therapeutics
2.1. Biogenesis and Structural Composition
2.1.1. Cellular Sources (Endosomal Route and ESCRT-Dependent/Independent Processes)
2.1.2. Heterogeneity of Cargo (Proteins, miRNAs, lncRNAs, Lipids) and Membrane Markers (CD9, CD63, CD81)
2.2. Intrinsic Function in Disease
2.2.1. Neurodegeneration Function (e.g., Aβ Propagation in Alzheimer’s)
2.2.2. Function in Cancer Development (Exosome-Mediated Metastasis)
3. Engineering Exosomes: Target Therapy Tools for Precision Drug Delivery
3.1. Cargo-Loading Strategies
3.1.1. Passive Loading
3.1.2. Active Loading
3.1.3. Cargo-Specific Optimization
3.2. Surface Functionalization for Targeted Delivery
3.2.1. Ligand Conjugation Approaches
3.2.2. Targeting Moieties
CNS Targeting
Cancer Targeting
3.3. Hybrid- and Biomaterial-Augmented Systems
3.3.1. Exosome–Liposome Hybrids: High Stability and Payload Capacity
3.3.2. Exosome–Polymer Composites: pH-Responsive PLGA Coatings for Tumor Microenvironment-Specific Release
3.4. Quality Control and Characterization
3.4.1. Metrics
Size Analysis (NTA and DLS)
Purity Testing (Western Blot, ExoView, HPLC)
Cargo Quantification (qPCR, HPLC)
3.4.2. Functional Assays
In Vitro BBB Models
Tumor Spheroid Penetration Assays
4. CNS Therapy: Breaching the Blood–Brain Barrier
4.1. Mechanisms of Exosome-Mediated BBB Penetration
4.1.1. Receptor-Mediated Transcytosis: TfR, LDLR, and Insulin Receptor Pathways
4.1.2. Trojan Horse Strategies: Monocyte-Derived Exosomes Hijacking Immune Cell Trafficking
4.2. Applications in Neurodegenerative Diseases
Disease | Therapy | Target | Drug/Cargo | Delivery Method | Key Findings | Animal Study Results | Authors and Studies |
---|---|---|---|---|---|---|---|
Alzheimer’s | Gene Silencing | BACE1 | siRNA | RVG29-exosomes | Reduced BACE1 mRNA by 60% and proteins by 62% | Improved cognitive function in mice | [6] |
Dual Gene Therapy | BACE1 and TREM2 | siRNA + pTREM2 | Exosome liposomes | Reduced amyloid plaques and activated microglia for neuroprotection | Enhanced memory restoration in APP/PS1 mice | [107] | |
Neuroprotection | Neurons | BDNF | Exosome injection | Increased synaptic plasticity and neuroprotection | Enhanced learning and memory in AD mouse models | [108] | |
Neuroprotection | Neurons | siRNA | Exosome injection | Increased synaptic plasticity and neuroprotection | Enhanced learning and memory in AD mouse models | [109] | |
Combination Therapy | BACE1 and Caspase-3 | siRNA cocktail | Intranasal exosomes | Reduced neurodegeneration and apoptosis | Improved memory in 3×Tg-AD mice | [110] | |
Biomarker Discovery | Plasma Biomarkers | BACE1-AS | Exosomal lncRNA analysis | Elevated BACE1-AS levels correlated with AD severity | Improved early detection with MRI exosome biomarkers | [111] | |
Parkinson’s | Protein Clearance | α-synuclein | siRNA | RVG-exosomes | Reduced α-syn aggregation; slowed disease progression | Neuroprotection in PD mouse models | [112] |
Neuroprotection | Dopaminergic neurons | GDNF | Exosome injection | Increased neuron survival; reduced inflammation | [113] | ||
Epigenetic Editing | SNCA gene | CRISPRi | Ultrasound-exosomes | Targeted SNCA methylation; reduced α-synuclein | Improved motor function in PD mice | [114] | |
Combination Therapy | α-synuclein | miR-188-3p exosomes | Exosome injection | Reduced neuroinflammation and α-syn aggregation | Protected dopamine neurons in MPTP PD mice | [115] | |
Long-Term Gene Silencing | α-synuclein | shRNA minicircle | RVG-exosomes | Reduced α-syn aggregates and neuronal loss | Sustained therapeutic effects for 6 weeks in PD mice | [116] | |
Biomarker Discovery | Plasma Biomarkers | α-synuclein + miRNAs | Exosomal protein profiling | α-syn exosomes identified as early PD biomarkers | Improved diagnostic accuracy for PD | [117] | |
Glioblastoma | Chemotherapy | Tumor cells | Temozolomide | EGFRvIII-exosomes | Enhanced drug penetration and tumor targeting | Reduced tumor size in xenograft mouse models | [110] |
Gene Therapy | EGFRvIII+ GBM cells | miR-34a + CDA | MSC-derived exosomes | Induced apoptosis; 40% cell death | Increased survival in GBM mouse models | [118] | |
Drug Resistance | Tumor Microenvironment | PTPRZ1–MET fusion exosomes | GBM-derived exosomes | Increased temozolomide resistance; induced migration | Promoted tumor growth in xenograft models | [119] | |
siRNA Therapy | STAT3 Pathway | Angiopep-2-siRNA | Engineered exosomes | Inhibited GBM proliferation; BBB penetration | Increased survival in orthotopic GBM mice | [120] | |
Combination Therapy | GBM Stem Cells | Temozolomide + O6-Benzylguanine | Dual-receptor exosomes | Overcame TMZ resistance; improved BBB penetration | Prolonged survival in GBM-bearing mice | [115] | |
miRNA Therapy | Tumor Cells | miR-128 | BM-MSC-derived exosomes | Reduced GBM proliferation; decreased BMI-1 gene expression | Increased survival in glioma xenograft models | [121] | |
Dual-Drug Delivery | GBM Metabolism | siRNA + Metformin | Blood-derived exosomes | Impaired GBM mitochondrial function | Reduced tumor growth in PDX models | [122] | |
CRISPR-Cas9 Therapy | TMZ Resistance | siRNA + TMZ | Targeted Exosomes | Overcame RAS-mediated chemoresistance | Tumor burden reduction in GBM models | [123] |
4.3. Alternative Modes of Delivery
5. Oncology: Breaking Through the Tumor Microenvironment
5.1. Increased Permeability and Retention (EPR) Effect: Utilize Exosome Size to Concentrate Within Tumors
5.2. Active Homing: CXCR4-Overexpressing Exosomes Targeting Hypoxic Niches
5.3. Stimuli-Responsive Drug Release
5.3.1. pH-Triggered Systems: Protonation in the Acidic Tumor Microenvironment
5.3.2. Enzyme-Cleavable Payloads: MMP-2/9 Cleavable Linkers
5.4. Overcoming Multidrug Resistance (MDR)
5.4.1. Co-Delivery of Chemotherapeutics and siRNA: Silencing P-gp, BCL-2, or Survivin
5.4.2. CRISPR-Cas9 Exosomes: Drug Efflux Transporter Knockout
5.5. Immunomodulatory Exosomes
5.5.1. Checkpoint Inhibitor Delivery: Anti-PD-1/PD-L1 Antibodies for T-Cell Activation
5.5.2. Exosome Vaccines: Tumor Antigen-Loaded Exosomes with Dendritic Cell Activation
6. Clinical Translation: From Bench to Bedside
6.1. Preclinical Success Stories
6.1.1. CNS: Curcumin-Loaded Exosomes in Alzheimer’s Mouse Models
6.1.2. Cancer: Paclitaxel-Loaded Exosomes in Pancreatic Cancer Xenografts
6.2. Clinical Trials and Outcomes
6.2.1. Phase I/II Trials: MSC-Derived Exosomes for Glioma and Metastatic Lung Cancer
6.2.2. Theranostic Applications: MRI/Fluorescence-Labeled Exosomes for Real-Time Tracking
Condition | Exosome Source | Cargo | Delivery Route | Key Findings | Outcome | Limitations | Reference |
---|---|---|---|---|---|---|---|
Glioblastoma | Tumor-derived exosomes | α-GalCer-loaded DCs | Intravenous | Induced strong cytotoxic T-cell activation, reducing tumor size | Enhanced anti-tumor immune response | Potential off-target immune effects | [156] |
Glioblastoma | Glioblastoma-derived exosomes | Lipid metabolism modulators | Systemic | Reduced lipid accumulation and ferroptosis in DCs, suppressing tumor growth | Decreased immune dysfunction | Mechanisms need further exploration | [157] |
NSCLC | Dendritic cell-derived exosomes | IFN-γ | Intravenous | Boosted NK cell activation, leading to prolonged progression-free survival | Median OS of 15 months | Limited sample size; variability in immune response | [158] |
Glioblastoma | Neuropilin-1-targeted exosomes | SPIONs and curcumin | Intravenous | Enabled MRI contrast with simultaneous therapy | Improved glioma tracking and treatment | Requires further optimization for human trials | [159] |
Lung Cancer | Exosomes | Paclitaxel | Intravenous | Increased tumor drug concentration, enabling fluorescence-based tracking | Improved drug targeting and monitoring | Scalability of manufacturing remains a challenge | [160] |
Glioblastoma | MSC-derived exosomes | miR-128 | Systemic | Targeted glioma cells, downregulating the BMI-1 gene | Increased survival in xenograft models | Clinical translation still requires further validation | [121] |
Glioblastoma | Exosome–liposome hybrid | NIR-II fluorescence probes | Intravenous | Enabled precise imaging and photothermal therapy | Extended mouse survival in glioblastoma models | Further studies needed for clinical trials | [161] |
7. Challenges and Mitigation Strategies
7.1. Technical Hurdles
7.1.1. Off-Target Toxicity: PEGylation to Avoid Liver Sequestration
7.1.2. Immune Activation: Human Platelet-Derived vs. Plant Exosomes for Reduced Immunogenicity
7.2. Key Hurdles in Clinical Adoption
7.2.1. Scalability and Standardization Issues
7.2.2. Heterogeneity and Lack of Precise Characterization
7.2.3. Immune Clearance and Off-Target Effects
7.2.4. Delivery Challenges and Tumor Penetration
7.3. Commercial and Regulatory Landscape
7.3.1. FDA/EMA Guidelines: Exosome-Based Therapies as Drugs vs. Biologics
7.3.2. Intellectual Property: Patent Wars over Exosome Isolation Techniques
8. Future Perspectives
8.1. AI-Optimized Exosome Design
8.2. Personalized Exosome Platforms
8.3. Integration with Emerging Technologies
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 26 February 2020).
- Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dement. 2022, 19, 658–670. [Google Scholar] [CrossRef]
- Pardridge, W.M. Treatment of Alzheimer’s Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals 2020, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- LeBleu, V.S.; Kalluri, R. Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends Cancer 2020, 6, 767–774. [Google Scholar] [CrossRef]
- Johnsen, K.B.; Gudbergsson, J.M.; Skov, M.N.; Pilgaard, L.; Moos, T.; Duroux, M. A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta-Rev. Cancer 2014, 1846, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, S.; Liu, L.; Dang, P.; Liu, Y.; Sun, Z.; Qiao, B.; Wang, C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct. Target. Ther. 2023, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; del Portillo, H.A.; et al. Applying extracellular vesicles based therapeutics in clinical trials—An ISEV position paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Riaz, F.; Zhu, H.; Cheng, W.; Brongiel, S.; Baldwin, E.; Kier, M.W.; Zaemes, J.; Hearn, C.; Abdelghany, O.; Parikh, R.B.; et al. The Inpatient Immunotherapy Outcomes study: A multicenter retrospective study of patients treated with immune checkpoint inhibitors in the inpatient setting. J. Clin. Oncol. 2022, 40, 300. [Google Scholar] [CrossRef]
- Fordjour, F.K.; Daaboul, G.G.; Gould, S.J. A shared pathway of exosome biogenesis operates at plasma and endosome membranes. bioRxiv 2019. [Google Scholar] [CrossRef]
- Li, S.P.; Lin, Z.X.; Jiang, X.Y.; Yu, X.Y. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol. Sin. 2018, 39, 542–551. [Google Scholar] [CrossRef]
- Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer and Metastasis Reviews. Cancer Metastasis Rev. 2013, 32, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA 2016, 113, E968–E977. [Google Scholar] [CrossRef]
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018, 20, 332–343. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Cho, W.C.S. Exosome secretion from hypoxic cancer cells reshapes the tumor microenvironment and mediates drug resistance. Cancer Drug Resist. 2022, 5, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 2010, 12, 19–30. [Google Scholar] [CrossRef]
- Vilette, D.; Laulagnier, K.; Huor, A.; Alais, S.; Simoes, S.; Maryse, R.; Provansal, M.; Lehmann, S.; Andreoletti, O.; Schaeffer, L.; et al. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell. Mol. Life Sci. 2015, 72, 4409–4427. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Böing, A.N.; van der Pol, E.; Grootemaat, A.E.; Coumans, F.A.W.; Sturk, A.; Nieuwland, R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 2014, 3, 23430. [Google Scholar] [CrossRef]
- Dumbović, G.; Sanjuan, X.; Perucho, M.; Forcales, S.-V. Stimulated emission depletion (STED) super resolution imaging of RNA- and protein-containing domains in fixed cells. Methods 2021, 187, 68–76. [Google Scholar] [CrossRef]
- Görgens, A.; Bremer, M.; Ferrer-Tur, R.; Murke, F.; Tertel, T.; Horn, P.A.; Thalmann, S.; Welsh, J.A.; Probst, C.; Guerin, C.; et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 2019, 8, 1587567. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yin, H. STAM transports STING oligomers into extracellular vesicles, down-regulating the innate immune response. J. Extracell. Vesicles 2023, 12, 12316. [Google Scholar] [CrossRef]
- Mosquera-Heredia, M.I.; Morales, L.C.; Vidal, O.M.; Barceló, E.; Silvera-Redondo, C.; Vélez, J.I.; Garavito-Galofre, P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021, 9, 1061. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K. ISEV2018 abstract book. J. Extracell. Vesicles 2018, 7, 1461450. [Google Scholar] [CrossRef]
- Ragusa, M.; Barbagallo, D.; Purrello, M. Exosomes: Nanoshuttles to the future of BioMedicine. Cell Cycle 2015, 14, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Huo, M.; Li, B.; Wang, W.; Piao, H.; Wang, Y.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front. Cell Dev. Biol. 2021, 8, 616161. [Google Scholar] [CrossRef]
- Robless, E.E.; Howard, J.A.; Casari, I.; Falasca, M. Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Lett. 2020, 501, 55–65. [Google Scholar] [CrossRef]
- Gao, X.; Nan, Y.; Zhao, Y.; Yuan, Y.; Ren, B.; Sun, C.; Cao, K.; Yu, M.; Feng, X.; Ye, J. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2017, 1862, 1512–1519. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Z.; Zhang, T.; Zhang, L.; Liu, X.; Wang, M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front. Immunol. 2024, 15, 1417758. [Google Scholar] [CrossRef]
- Haidar, Z.S. Exosomes: Human Saliva-derived nanoBiomarkers for Use in Clinical Dentistry? Int. J. Odontostomatol. 2018, 12, 5–6. [Google Scholar] [CrossRef]
- Exosomes. Nat. Biotechnol. 2020, 38, 1150.
- Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 2021, 12, 4389. [Google Scholar] [CrossRef]
- Skog, J.; Würdinger, T.; Van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Aheget, H.; Mazini, L.; Martin, F.; Belqat, B.; Marchal, J.A.; Benabdellah, K. Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers 2020, 13, 84. [Google Scholar] [CrossRef]
- Shaheen, H.; Singh, S.; Melnik, R. A Neuron-Glial Model of Exosomal Release in the Onset and Progression of Alzheimer’s Disease. Front. Comput. Neurosci. 2021, 15, 653097. [Google Scholar] [CrossRef]
- Chiarini, A.M.; Armato, U.; Eccher, C.; Prà, I.D. Linking astrocytes’ exosomes to Alzheimer pathogenesis and therapy. In Diagnosis and Management in Dementia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 599–615. [Google Scholar]
- Winston, C.N.; Aulston, B.; Rockenstein, E.M.; Adame, A.; Prikhodko, O.; Dave, K.N.; Mishra, P.; Rissman, R.A.; Yuan, S.H. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. J. Alzheimer’s Dis. 2018, 67, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Wu, Z.; Li, J.; Wu, S.; Shi, W.; Wang, L. The emerging double-edged sword role of exosomes in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1209115. [Google Scholar] [CrossRef]
- Yuyama, K.; Sun, H.; Mitsutake, S.; Igarashi, Y. Sphingolipid-modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. J. Biol. Chem. 2012, 287, 10977. [Google Scholar] [CrossRef]
- Tian, M.-S.; Yi, X.-N. The Role of Mesenchymal Stem Cell Exosomes in the Onset and Progression of Alzheimer’s Disease. Biomed. Sci. 2024, 10, 6–13. [Google Scholar]
- Jiang, J.; Li, J.; Zhou, X.; Zhao, X.; Huang, B.; Qin, Y. Exosomes Regulate the Epithelial–Mesenchymal Transition in Cancer. Front. Oncol. 2022, 12, 864980. [Google Scholar] [CrossRef]
- Beeraka, N.M.; Doreswamy, S.H.; Sadhu, S.P.; Srinivasan, A.; Pragada, R.R.; Madhunapantula, S.V.; Aliev, G. The Role of Exosomes in Stemness and Neurodegenerative Diseases—Chemoresistant-Cancer Therapeutics and Phytochemicals. Int. J. Mol. Sci. 2020, 21, 6818. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, T.; Chen, J.; Li, R.; Chen, H.; Luo, S.; Chen, D.; Cai, C.; Li, W. The role of Exosomal miRNAs in cancer. J. Transl. Med. 2022, 20, 6. [Google Scholar] [CrossRef]
- Zeng, H.; Guo, S.; Ren, X.; Wu, Z.; Liu, S.; Yao, X. Current Strategies for Exosome Cargo Loading and Targeting Delivery. Cells 2023, 12, 1416. [Google Scholar] [CrossRef]
- Xi, X.M.; Chen, M.; Xia, S.J.; Lu, R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 2021, 76, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Qutub, M.; Tatode, A.; Taksande, J.; Premchandani, T.; Umekar, M.; Hussain, U.M.; Biyani, D.; Mane, D. Stimuli-responsive supramolecular hydrogels for paclitaxel delivery: Progress and prospects. Asp. Mol. Med. 2025, 5, 100062. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, S.; Liang, Y.; Liu, L.; Wang, A.; Sun, K.; Li, Y. Construction and Evaluation of Liraglutide Delivery System based on Milk Exosomes: A New Idea for Oral Peptide Delivery. Curr. Pharm. Biotechnol. 2022, 23, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Nasir, F. The Promise of Exosomes as Drug Delivery Systems. Pharm. Commun. 2023, 2, 1–2. [Google Scholar] [CrossRef]
- Qutub, M.; Tatode, A.; Premchandani, T.; Taksande, J.; Mane, D.; Umekar, M. Blending induced variations in Poloxamer’s/Pluronic’s® gelation: Thermodynamic and rheological perspectives. JCIS Open 2024, 16, 100126. [Google Scholar] [CrossRef]
- Zhan, Q.; Yi, K.; Li, X.; Cui, X.; Yang, E.; Chen, N.; Yuan, X.; Zhao, J.; Hou, X.; Kang, C. Phosphatidylcholine-Engineered Exosomes for Enhanced Tumor Cell Uptake and Intracellular Antitumor Drug Delivery. Macromol. Biosci. 2021, 21, 2100042. [Google Scholar] [CrossRef]
- Lowe, N.M.; Mizenko, R.R.; Nguyen, B.B.; Chiu, K.L.; Arun, V.; Panitch, A.; Carney, R.P. Orthogonal analysis reveals inconsistencies in cargo loading of extracellular vesicles. J. Extracell. Biol. 2024, 3, e70003. [Google Scholar] [CrossRef]
- Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Yim, N.; Ryu, S.W.; Choi, K.; Lee, K.R.; Lee, S.; Choi, H.; Park, J.; Kim, D.; Heo, W.; Choi, C. Abstract 2167: Efficient and rapid cellular delivery of bioactive proteins using EXPLOR: Exosomes engineered for protein loading via optically reversible protein-protein interaction. Cancer Res. 2016, 76, 2167. [Google Scholar] [CrossRef]
- Warren, M.R.; Zhang, C.; Vedadghavami, A.; Bokvist, K.; Dhal, P.K.; Bajpayee, A.G. Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomater. Sci. 2021, 9, 4260–4277. [Google Scholar] [CrossRef] [PubMed]
- Mehryab, F.; Rabbani, S.; Shahhosseini, S.; Shekari, F.; Fatahi, Y.; Baharvand, H.; Haeri, A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches. Acta Biomater. 2020, 113, 42–62. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Wang, J.; Su, L.; Lin, J.; Yan, X. Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. J. Extracell. Vesicles 2021, 10, e12163. [Google Scholar] [CrossRef]
- de Jong, O.G.; Murphy, D.E.; Mäger, I.; Willms, E.; Garcia-Guerra, A.; Gitz-Francois, J.J.; Lefferts, J.; Gupta, D.; Steenbeek, S.C.; van Rheenen, J.; et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 2020, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. (Invited) Chiral Graphene Quantum Dot Enhanced Drug Loading into Exosomes. ECS Meet. Abstr. 2024, MA2024-01, 859. [Google Scholar] [CrossRef]
- Elsharkasy, O.M.; Hegeman, C.V.; Lansweers, I.; Cotugno, O.L.; de Groot, I.Y.; de Wit, Z.E.M.N.J.; Liang, X.; Garcia-Guerra, A.; Moorman, N.J.; Lefferts, J.; et al. A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gee, P.; Lung, M.S.Y.; Okuzaki, Y.; Sasakawa, N.; Iguchi, T.; Makita, Y.; Hozumi, H.; Miura, Y.; Yang, L.F.; Iwasaki, M.; et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 2020, 11, 1334. [Google Scholar] [CrossRef]
- Hallal, S.; Tűzesi, Á.; Grau, G.E.; Buckland, M.E.; Alexander, K.L. Understanding the extracellular vesicle surface for clinical molecular biology. J. Extracell. Vesicles 2022, 11, e12260. [Google Scholar] [CrossRef]
- Stranford, D.M.; Simons, L.M.; Berman, K.E.; Cheng, L.; DiBiase, B.N.; Hung, M.E.; Lucks, J.B.; Hultquist, J.F.; Leonard, J.N. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat. Biomed. Eng. 2023, 8, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Salunkhe, S.; Dheeraj; Basak, M.; Chitkara, D.; Mittal, A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release 2020, 326, 599–614. [Google Scholar]
- Mukerjee, N.; Sonar, S. Signature of click chemistry in exosome modification for cancer therapeutic. Clin. Transl. Discov. 2024, 4, e335. [Google Scholar] [CrossRef]
- Asai, T.; Trinh, R.; Ng, P.P.; Penichet, M.L.; Wims, L.A.; Morrison, S.L. A human biotin acceptor domain allows site-specific conjugation of an enzyme to an antibody-avidin fusion protein for targeted drug delivery. Biomol. Eng. 2005, 21, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Limoni, S.K.; Moghadam, M.F.; Moazzeni, S.M.; Gomari, H.; Salimi, F. Engineered Exosomes for Targeted Transfer of siRNA to HER2 Positive Breast Cancer Cells. Appl. Biochem. Biotechnol. 2018, 187, 352–364. [Google Scholar] [CrossRef]
- Yu, Y.; Li, W.; Mao, L.; Peng, W.; Long, D.; Li, D.; Zhou, R.; Dang, X. Genetically engineered exosomes display RVG peptide and selectively enrich a neprilysin variant: A potential formulation for the treatment of Alzheimer’s disease. J. Drug Target. 2021, 29, 1128–1138. [Google Scholar] [CrossRef]
- Jiang, P.; Xiao, Y.; Hu, X.; Wang, C.; Gao, H.; Huang, H.; Lv, J.; Qi, Z.; Wang, Z. RVG29 Peptide-Modified Exosomes Loaded with Mir-133b Mediate the RhoA-ROCK Pathway to Improve Motor and Neurological Symptoms in Parkinson’s Disease. ACS Biomater. Sci. Eng. 2024, 10, 3069–3085. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, M.; Lee, Y.; Byun, J.W.; Hwang, D.W.; Lee, M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J. Control. Release 2020, 317, 273–281. [Google Scholar] [CrossRef]
- Choi, H.; Choi, K.; Kim, D.-H.; Oh, B.-K.; Yim, H.; Jo, S.; Choi, C. Strategies for Targeted Delivery of Exosomes to the Brain: Advantages and Challenges. Pharmaceutics 2022, 14, 672. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zou, W.; Wu, Y.; Zhao, J.; Chen, X.; Zhou, G.G. Exosomes containing miRNAs targeting HER2 synthesis and engineered to adhere to HER2 on tumor cells surface exhibit enhanced antitumor activity. J. Nanobiotechnol. 2020, 18, 153. [Google Scholar] [CrossRef]
- Kolhatkar, R.; Lote, A.; Khambhati, H. Active Tumor Targeting of Nanomaterials Using Folic Acid, Transferrin and Integrin Receptors. Curr. Drug Discov. Technol. 2011, 8, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Tatode, A.; Agrawal, P.R.; Taksande, J.; Qutub, M.; Premchandani, T.; Umekar, M.; Danao, K. Role of folate receptor and CD44 in targeting of docetaxel and paclitaxel fabricated conjugates for efficient cancer therapy. J. Med. Surg. Public Health 2024, 5, 100163. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Liu, Y.; Zhang, Q.; Qin, Y.; Yin, Y.; Yuan, W.; Yang, Y.; Xie, Y.; Zhang, Z.; et al. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Int. J. Pharm. 2013, 454, 31–40. [Google Scholar] [CrossRef]
- Koh, B.; Park, S.B.; Yoon, E.; Yoo, H.M.; Lee, D.; Heo, J.-N.; Ahn, S. αVβ3-Targeted Delivery of Camptothecin-Encapsulated Carbon Nanotube-Cyclic RGD in 2D and 3D Cancer Cell Culture. J. Pharm. Sci. 2019, 108, 3704–3712. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.K.; Kondaiah, P.; Bhattacharya, S.; Boturyn, D.; Dumy, P. Co-liposomes comprising a lipidated multivalent RGD-peptide and a cationic gemini cholesterol induce selective gene transfection in αvβ3 and αvβ5 integrin receptor-rich cancer cells. J. Mater. Chem. B 2014, 2, 5758–5767. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Li, G.; Chen, J.; Yang, Y.; Bian, L.; Zhou, J.; Wu, Y.; Chen, Y. Enhanced Therapeutic Potential of Hybrid Exosomes Loaded with Paclitaxel for Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 3645. [Google Scholar] [CrossRef]
- Long, M.; Lu, A.; Lu, M.; Weng, L.; Chen, Q.; Zhu, L.; Chen, Z. Azo-inserted responsive hybrid liposomes for hypoxia-specific drug delivery. Acta Biomater. 2020, 115, 343–357. [Google Scholar] [CrossRef]
- Xiao, P.; Wang, H.; Liu, H.; Yuan, H.; Guo, C.; Feng, Y.; Qi, P.; Yin, T.; Zhang, Y.; He, H.; et al. Milk Exosome–Liposome Hybrid Vesicles with Self-Adapting Surface Properties Overcome the Sequential Absorption Barriers for Oral Delivery of Peptides. ACS Nano 2024, 18, 21091–21111. [Google Scholar] [CrossRef]
- Joshi, R.; Lampe, J.; Vishwanatha, J.K.; Ranjan, A.P. Abstract 832: Exosome-based hybrid nanosystem for targeted TNBC therapy. Cancer Res. 2023, 83, 832. [Google Scholar] [CrossRef]
- Yuba, E.; Kanda, Y.; Yoshizaki, Y.; Teranishi, R.; Harada, A.; Sugiura, K.; Izawa, T.; Yamate, J.; Sakaguchi, N.; Koiwai, K.; et al. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 2015, 67, 214–224. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yuba, E.; Hayashi, H.; Harada, A.; Kono, K. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems. Bioconjug. Chem. 2017, 29, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Lathwal, S.; Yerneni, S.S.; Boye, S.; Muza, U.L.; Takahashi, S.; Sugimoto, N.; Lederer, A.; Das, S.R.; Campbell, P.G.; Matyjaszewski, K. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc. Natl. Acad. Sci. USA 2021, 118, e2020241118. [Google Scholar] [CrossRef] [PubMed]
- Sancho-Albero, M.; Navascués, N.; Mendoza, G.; Sebastián, V.; Arruebo, M.; Martín-Duque, P.; Santamaría, J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J. Nanobiotechnol. 2019, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Anilkumar, A.; Lopez, S.; Leslie, S.; Doxtater, K.; Chauhan, N.; Hafeez, B.; Yallapu, M.; Jaggi, M.; Chauhan, S.; Tripathi, M. Abstract 2790: Exosomes as nanocarriers for biomolecules and potential diagnostic targets in cancer. Cancer Res. 2022, 82, 2790. [Google Scholar] [CrossRef]
- Duréndez-Sáez, E.; Calabuig-Fariñas, S.; Torres-Martínez, S.; Moreno-Manuel, A.; Herreros-Pomares, A.; Escorihuela, E.; Mosqueda, M.; Gallach, S.; Guijarro, R.; Serna, E.; et al. Analysis of Exosomal Cargo Provides Accurate Clinical, Histologic and Mutational Information in Non-Small Cell Lung Cancer. Cancers 2022, 14, 3216. [Google Scholar] [CrossRef]
- Sitar, S.; Kejžar, A.; Pahovnik, D.; Kogej, K.; Tušek-Žnidarič, M.; Lenassi, M.; Žagar, E. Size Characterization and Quantification of Exosomes by Asymmetrical-Flow Field-Flow Fractionation. Anal. Chem. 2015, 87, 9225–9233. [Google Scholar] [CrossRef]
- Heiskanen, M. Western Blot Characterization of Exosomes Isolated from Rat Plasma and Evaluation of the Efficiency of a Precipitation Method in Exosome Isolation; JYX. Available online: https://jyx.jyu.fi/jyx/Record/jyx_123456789_54592 (accessed on 23 February 2023).
- Lu, L.; Han, C.; Zhang, Q.; Wang, M.; Qi, D.; Gao, M.; Wang, N.; Yin, J.; Dong, F.; Ge, X. A novel purity analysis method of bovine milk-derived exosomes by two-dimensional high-performance liquid chromatography. bioRxiv 2023. [Google Scholar]
- Wu, T.; Dai, Y.; Xu, Y.; Zheng, J.; Chen, S.; Zhang, Y.; Tian, P.; Zheng, X.; Wang, H. ExosomePurity: Tumour purity deconvolution in serum exosomes based on miRNA signatures. Brief. Bioinform. 2023, 24, bbad119. [Google Scholar] [CrossRef]
- Yang, J.S.; Lee, J.C.; Byeon, S.K.; Rha, K.H.; Moon, M.H. Size Dependent Lipidomic Analysis of Urinary Exosomes from Patients with Prostate Cancer by Flow Field-Flow Fractionation and Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2017, 89, 2488–2496. [Google Scholar] [CrossRef]
- Kumari, A.; Youngblood, M.; Gould, A.; Kang, Y.-T.; Chen, L.; Habashy, K.; Amidei, C.; Ward, R.; Gomez, C.; Bouchoux, G.; et al. Abstract 3897: Isolation and molecular characterization of exosomes from glioblastoma patients using a microfluidic device after ultrasound-based opening of the blood-brain barrier. Cancer Res. 2024, 84, 3897. [Google Scholar] [CrossRef]
- Zhuang, W.; Zhao, M.; Li, B. Navigating the Blood-Brain Barrier: An Anti-CD19 Modified-Exosome Delivery System for Precise Targeting of CNS Lymphoma. Blood 2023, 142, 3008. [Google Scholar] [CrossRef]
- Patel, G.K.; Khan, M.A.; Zubair, H.; Srivastava, S.K.; Khushman, M.; Singh, S.; Singh, A.P. Abstract 1991: Exploring the potential of exosomes for cancer diagnosis and management: Comparative analysis of isolation methods for optimum yield purity and downstream applications. Cancer Res. 2019, 79, 1991. [Google Scholar] [CrossRef]
- Samanta, K.; Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Abstract 3564: MicroRNA-145 gene therapy for pancreatic cancer using exosome as carrier source derived from cancer cells. Cancer Res. 2019, 79, 3564. [Google Scholar] [CrossRef]
- André, S.; Larbanoix, L.; Verteneuil, S.; Stanicki, D.; Nonclercq, D.; Elst, L.V.; Laurent, S.; Muller, R.N.; Burtea, C. Development of an LDL Receptor-Targeted Peptide Susceptible to Facilitate the Brain Access of Diagnostic or Therapeutic Agents. Biology 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Boado, R.J. IgG Fusion Proteins for Brain Delivery of Biologics via Blood–Brain Barrier Receptor-Mediated Transport. Pharmaceutics 2022, 14, 1476. [Google Scholar] [CrossRef]
- Liu, X.; Miao, J.; Wang, C.; Zhou, S.; Chen, S.; Ren, Q.; Hong, X.; Wang, Y.; Hou, F.F.; Zhou, L.; et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 2020, 97, 1181–1195. [Google Scholar] [CrossRef]
- Gao, D.; Lo, P.C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release 2018, 282, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Haqqani, A.S.; Bélanger, K.; Stanimirovic, D.B. Receptor-mediated transcytosis for brain delivery of therapeutics: Receptor classes and criteria. Front. Drug Deliv. 2024, 4, 1360302. [Google Scholar] [CrossRef]
- Ruan, S.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wang, R.; Sun, X.; Yu, W.; He, Q.; Gao, H. Acid-Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood–Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery. Adv. Funct. Mater. 2018, 28, 1802227. [Google Scholar] [CrossRef]
- Morrison, K.R.; Wang, T.; Chan, K.Y.; Trotter, E.W.; Gillespie, A.; Michael, M.Z.; Oakhill, J.S.; Hagan, I.M.; Petersen, J. Elevated basal AMP-activated protein kinase activity sensitizes colorectal cancer cells to growth inhibition by metformin. Open Biol. 2023, 13, 230021. [Google Scholar] [CrossRef]
- Boado, R.J.; Pardridge, W.M. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier. J. Drug Deliv. 2011, 2011, 296151. [Google Scholar] [CrossRef]
- Feng, J.M.; Lui, P.C.W.; Li, J.Y. Receptor-Mediated Transport of Drugs Across the BBB. In Drug Delivery to the Central Nervous System; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [Google Scholar]
- Park, K. Trojan monocytes for improved drug delivery to the brain. J. Control. Release 2008, 132, 75. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Cai, G.; Yang, Z.; Shi, H.; Zeng, H.; Ye, Q.; Hu, Z.; Wang, Z. Biomimetic Nanovesicles as a Dual Gene Delivery System for the Synergistic Gene Therapy of Alzheimer’s Disease. ACS Nano 2024, 18, 11753–11768. [Google Scholar] [CrossRef]
- Song, Z.; Xu, Y.; Deng, W.; Zhang, L.; Zhu, H.; Yu, P.; Qu, Y.; Zhao, W.; Han, Y.; Qin, C. Brain Derived Exosomes Are a Double-Edged Sword in Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Seyfizadeh, N.; Borzouisileh, S.; Elahimanesh, F.; Hosseini, V.; Nouri, M. Exosome-mediated therapeutic delivery: A new horizon for human neurodegenerative disorders’ treatment (with a focus on siRNA delivery improvement). Process. Biochem. 2019, 85, 164–174. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Zhang, W.; Li, M.; Wang, N.; Peng, C.; Zhang, X.; Li, Y. Enhanced Nose-to-Brain Delivery of Combined Small Interfering RNAs Using Lesion-Recognizing Nanoparticles for the Synergistic Therapy of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2023, 15, 53177–53188. [Google Scholar] [CrossRef]
- Wang, D.; Wang, P.; Bian, X.; Xu, S.; Zhou, Q.; Zhang, Y.; Ding, M.; Han, M.; Huang, L.; Bi, J.; et al. Elevated plasma levels of exosomal BACE1 AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease. Mol. Med. Rep. 2020, 22, 227–238. [Google Scholar] [CrossRef]
- Cooper, J.M.; Wiklander, P.B.O.; Nordin, J.Z.; Al-Shawi, R.; Wood, M.J.; Vithlani, M.; Schapira, A.H.V.; Simons, J.P.; El-Andaloussi, S.; Alvarez-Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, X.D.; Zhang, S.M.; Wang, H.W.; Wang, Y.L. Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes Dis. 2021, 8, 124–132. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Guo, X.; Sun, Y.; Chai, W.; Chang, Y.; Huang, Q.; Wang, P.; Wang, X. Ultrasound-Assisted CRISPRi-Exosome for Epigenetic Modification of α-Synuclein Gene in a Mouse Model of Parkinson’s Disease. ACS Nano 2024, 18, 7837–7851. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Xing, H.; Wang, Y.; Guo, Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol. Ther. Nucleic Acids 2021, 23, 1334–1344. [Google Scholar] [CrossRef]
- Izco, M.; Blesa, J.; Schleef, M.; Schmeer, M.; Porcari, R.; Al-Shawi, R.; Ellmerich, S.; de Toro, M.; Gardiner, C.; Seow, Y.; et al. Systemic Exosomal Delivery of shRNA Minicircles Prevents Parkinsonian Pathology. Mol. Ther. 2019, 27, 2111–2122. [Google Scholar] [CrossRef]
- Ma, Z.L.; Wang, Z.L.; Zhang, F.Y.; Liu, H.X.; Mao, L.H.; Yuan, L. Biomarkers of Parkinson’s Disease: From Basic Research to Clinical Practice. Aging Dis. 2024, 15, 1813–1830. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, R.; Kiani, J.; Tong, W.Y.; Soleimani, M.; Voelcker, N.H.; Arefian, E. Engineered anti-EGFRvIII targeted exosomes induce apoptosis in glioblastoma multiforme. J. Drug Target. 2022, 31, 310–319. [Google Scholar] [CrossRef]
- Zeng, A.-L.; Yan, W.; Liu, Y.-W.; Wang, Z.; Hu, Q.; Nie, E.; Zhou, X.; Li, R.; Wang, X.-F.; Jiang, T.; et al. Tumour exosomes from cells harbouring PTPRZ1–MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene 2017, 36, 5369–5381. [Google Scholar] [CrossRef]
- Liang, S.F.; Zuo, F.F.; Yin, B.C.; Ye, B.C. Delivery of siRNA based on engineered exosomes for glioblastoma therapy by targeting STAT3. Biomater. Sci. 2022, 10, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Shahar, T.; Hossain, A.; Kerrigan, B.P.; Gumin, J.; Li, S.; Gao, F.; Yamasaki, K.; Shimizu, Y.; Lang, F.F. Abstract 2668: The exosomes derived from BM-hMSCs home to glioma and deliver synthetic microRNA mimics after systemic administration. Cancer Res. 2016, 76, 2668. [Google Scholar] [CrossRef]
- Zhan, Q.; Yi, K.; Cui, X.; Li, X.; Yang, S.; Wang, Q.; Fang, C.; Tan, Y.; Li, L.; Xu, C.; et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro-Oncology 2022, 24, 1871–1883. [Google Scholar] [CrossRef]
- Zhao, J.; Cui, X.; Zhan, Q.; Zhang, K.; Su, D.; Yang, S.; Hong, B.; Wang, Q.; Ju, J.; Cheng, C.; et al. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics 2024, 14, 2835–2855. [Google Scholar] [CrossRef]
- Gänger, S.; Schindowski, K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Davis, T.P. Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019, 11, 598. [Google Scholar] [CrossRef]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Mishra, G.; Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Gupta, U. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics. Pharm. Nanotechnol. 2018, 5, 203–214. [Google Scholar] [CrossRef]
- Simhadri, A.; Dommeti, M.D.; Sana, J. A Comprehensive Review on the Nanotechnology-based Intranasal Drug Delivery Systems for Brain Targeting. J. Pharma Insights Res. 2024, 2, 15–23. [Google Scholar] [CrossRef]
- Ma, S.; Li, M.; Liu, N.; Li, Y.; Li, Z.; Yang, Y.; Yu, F.; Hu, X.; Liu, C.; Mei, X. Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. Oncotarget 2017, 8, 87276–87291. [Google Scholar] [CrossRef]
- Upponi, J.R.; Torchilin, V.P. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. In Nano-Oncologicals: New Targeting and Delivery Approaches; Springer International Publishing: Cham, Switzerland, 2014; pp. 3–45. [Google Scholar]
- Theek, B.; Baues, M.; Ojha, T.; Möckel, D.; Veettil, S.K.; Steitz, J.; van Bloois, L.; Storm, G.; Kiessling, F.; Lammers, T. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Release 2016, 231, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Ieranò, C.; Santagata, S.; Napolitano, M.; Guardia, F.; Grimaldi, A.; Antignani, E.; Botti, G.; Consales, C.; Riccio, A.; Nanayakkara, M.; et al. CXCR4 and CXCR7 transduce through mTOR in human renal cancer cells. Cell Death Dis. 2014, 5, e1310. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, Y.; Xu, Y.; Wang, J.; Zhang, C.; Du, Y.; Wang, L.; Li, L.; Wang, B.; Shen, J.; et al. Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene 2018, 676, 101–109. [Google Scholar] [CrossRef]
- Mannavola, F.; Tucci, M.; Felici, C.; Passarelli, A.; D’Oronzo, S.; Silvestris, F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J. Transl. Med. 2019, 17, 230. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y.; Zhao, K.; Lü, W.-D.; Hui, X.; Ma, Y.; Lv, R. Exosome-based rare earth nanoparticles for targeted in situ and metastatic tumor imaging with chemo-assisted immunotherapy. Biomater. Sci. 2022, 10, 744–752. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.-Q.; Zhang, X.; et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release 2016, 222, 56–66. [Google Scholar] [CrossRef]
- Yamamoto, E.; Hyodo, K.; Suzuki, T.; Ishihara, H.; Kikuchi, H.; Kato, M. Simulation of Stimuli-Responsive and Stoichiometrically Controlled Release Rate of Doxorubicin from Liposomes in Tumor Interstitial Fluid. Pharm. Res. 2018, 35, 103. [Google Scholar] [CrossRef]
- Chen, K.J.; Chiu, Y.L.; Chen, Y.M.; Ho, Y.C.; Sung, H.W. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Biomaterials 2011, 32, 2586–2592. [Google Scholar] [CrossRef]
- Niu, Y.; Zhu, J.; Gao, C.; Xu, Q.; He, Z.; Chen, D.; Xu, M.; Liu, Y. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release. Nanoscale 2020, 12, 2673–2685. [Google Scholar]
- Nagel, G.; Tschiche, H.R.; Wedepohl, S.; Calderón, M. Modular approach for theranostic polymer conjugates with activatable fluorescence: Impact of linker design on the stimuli-induced release of doxorubicin. J. Control. Release 2018, 285, 200–211. [Google Scholar] [CrossRef]
- Cheng, Y.; Zou, T.; Dai, M.; He, X.Y.; Peng, N.; Wu, K.; Wang, X.Q.; Liao, C.Y.; Liu, Y. Doxorubicin loaded tumor-triggered targeting ammonium bicarbonate liposomes for tumor-specific drug delivery. Colloids Surf. B Biointerfaces 2019, 178, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, H.M.; Mahdipoor, P.; Uludağ, H. Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Ther. 2013, 20, 169–177. [Google Scholar] [CrossRef]
- Navarro, G.; Sawant, R.R.; Biswas, S.; Essex, S.; Tros de Ilarduya, C.; Torchilin, V.P. P-Glycoprotein Silencing with siRNA Delivered by Dope-Modified Pei Overcomes Doxorubicin Resistance in Breast Cancer Cells. Nanomedicine 2012, 7, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Yin, L.; Zhou, X.; Zhu, Y.; Zhu, D.; Yu, Y.; Feng, Y. Inhibition of survivin reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 2006, 107, 746–756. [Google Scholar] [CrossRef]
- Ganesh, S.; Iyer, A.K.; Weiler, J.; Morrissey, D.V.; Amiji, M.M. Combination of siRNA-directed Gene Silencing With Cisplatin Reverses Drug Resistance in Human Non-small Cell Lung Cancer. Mol. Ther.-Nucleic Acids 2013, 2, e110. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y.; Guo, L.; Liu, C.; Wang, P.; Ren, W. Exosomal microRNA-107 reverses chemotherapeutic drug resistance of gastric cancer cells through HMGA2/mTOR/P-gp pathway. BMC Cancer 2021, 21, 1290. [Google Scholar] [CrossRef]
- Yu, J.; Hu, F.; Zhu, Q.; Li, X.; Ren, H.; Fan, S.; Qian, B.; Zhai, B.; Yang, D. PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers. Nanoscale Res. Lett. 2020, 15, 59. [Google Scholar] [CrossRef]
- Ciesielski, M.J.; Galbo, P.; Figel, S.; Wiltsie, L.; Frank, C.; Qiu, J.; Fenstermaker, R.A. Abstract 2725: Circulating CD9-GFAP-survivin exosomes during active specific immunotherapy, a potential biomarker for glioma. Cancer Res. 2017, 77, 2725. [Google Scholar] [CrossRef]
- Yazdani, M.; Gholizadeh, Z.; Nikpoor, A.R.; Hatamipour, M.; Alani, B.; Nikzad, H.; Roshan, N.M.; Verdi, J.; Jaafari, M.R.; Noureddini, M.; et al. Vaccination with dendritic cells pulsed ex vivo with gp100 peptide-decorated liposomes enhances the efficacy of anti PD-1 therapy in a mouse model of melanoma. Vaccine 2020, 38, 5665–5677. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Wang, X.; Mo, X.; Gu, J.; Lu, Z.; Pan, Z.; Zhu, Y. Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-κB expression in MCF-7/5-FU cells. Int. J. Biochem. Cell Biol. 2013, 45, 2036–2044. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale 2019, 11, 7481–7496. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Lopes, I.; Magalhães, L.; Sárria, M.P.; Machado, R.; Sousa, J.C.; Botelho, C.; Teixeira, J.; Gomes, A.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease. J. Control. Release 2021, 336, 130–143. [Google Scholar] [CrossRef]
- Kim, M.S.; Haney, M.J.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine 2018, 14, 195–204. [Google Scholar] [CrossRef]
- Satake, T.; Suetsugu, A.; Nakamura, M.; Kunisada, T.; Saji, S.; Moriwaki, H.; Shimizu, M.; Hoffman, R.M. Color-coded Imaging of the Fate of Cancer-cell-derived Exosomes During Pancreatic Cancer Metastases in a Nude-mouse Model. Anticancer Res. 2019, 39, 4055–4060. [Google Scholar] [CrossRef]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Liu, J.; Meng, H.; Zhang, R.; Ma, L.; Wu, L.; Yu, S.; Shi, F.; Li, Y.; et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett. 2017, 411, 182–190. [Google Scholar] [CrossRef]
- Yang, F.; Wang, L.; Zhao, W.; Wang, S.; Li, J.; Sun, A.; Wang, M.; Wang, Z.; Chen, Z.; Heng, X. A Systematic Review and Meta-Analysis on the Effectiveness of Radiotherapy and Temozolomide Treatment With or Without Bevacizumab in Patients With Glioblastoma Multiforme. Neurol. India 2024, 72, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Besse, B.; Charrier, M.; Lapierre, V.; Dansin, E.; Lantz, O.; Planchard, D.; Le Chevalier, T.; Livartoski, A.; Barlesi, F.; Laplanche, A.; et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology 2016, 5, 1071008. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Han, Y.; An, Y.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zang, L.; Cheng, Y.; Qin, L. Cancer Exosome Loaded with Paclitaxel for Targeted Lung Cancer Therapy. J. Biomater. Tissue Eng. 2023, 13, 118–122. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Gu, J.; Huang, H.; Xie, H.; Yu, C.; Roy, S.; Chen, X.; Kuang, T.; Zhang, Y.; et al. Engineering of exosome-liposome hybrid-based theranostic nanomedicines for NIR-II fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma. Colloids Surf. B Biointerfaces 2024, 245, 114258. [Google Scholar] [CrossRef]
- Shi, S.; Li, T.; Wen, X.; Wu, S.Y.; Xiong, C.; Zhao, J.; Lincha, V.R.; Chow, D.S.; Liu, Y.; Sood, A.K.; et al. Copper-64 Labeled PEGylated Exosomes for In Vivo Positron Emission Tomography and Enhanced Tumor Retention. Bioconjug. Chem. 2019, 30, 2675–2683. [Google Scholar] [CrossRef]
- Emam, S.E.; Elsadek, N.E.; Abu Lila, A.S.; Takata, H.; Kawaguchi, Y.; Shimizu, T.; Ando, H.; Ishima, Y.; Ishida, T. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J. Control. Release 2021, 334, 327–334. [Google Scholar] [CrossRef]
- Ishida, T.; Kashima, S.; Kiwada, H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J. Control. Release 2008, 126, 162–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wu, N.; Feng, Y.; Wang, J.; Ma, L.; Chen, Y. The role of exosomes in liver cancer: Comprehensive insights from biological function to therapeutic applications. Front. Immunol. 2024, 15, 1473030. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, S.; Hu, H.; Yang, J.; Wang, X.; Ma, Y.; Jiang, J.; Wang, J.; Zhong, L.; Chen, M.; et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochem. Biophys. Res. Commun. 2019, 508, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shen, M.; Fan, X.; Liu, Y.; Yang, L. Pathogenic and Potential Therapeutic Roles of Exosomes Derived from Immune Cells in Liver Diseases. Front. Immunol. 2022, 13, 810300. [Google Scholar] [CrossRef] [PubMed]
- Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, B.; Tu, H.; Pan, C.; Chai, Y.; Chen, W. Advances in colorimetric biosensors of exosomes: Novel approaches based on natural enzymes and nanozymes. Nanoscale 2023, 16, 1005–1024. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, E.K.; Yim, J.; Lee, M.H.; Lee, E.; Lee, Y.-S.; Seo, W. Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases. Biomol. Ther. 2023, 31, 253–263. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, Q.; Que, H.; Wang, N.; Gong, P.; Gu, J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int. J. Mol. Sci. 2022, 23, 10972. [Google Scholar] [CrossRef]
- Kao, Y.H.; Chang, C.Y.; Lin, Y.C.; Chen, P.H.; Lee, P.H.; Chang, H.R.; Chang, W.Y.; Chang, Y.C.; Wun, S.F.; Sun, C.K. Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation. Curr. Stem Cell Res. Ther. 2024, 19, 906–918. [Google Scholar] [CrossRef]
- Wei, X.C.; Liu, L.J.; Zhu, F. Exosomes as potential diagnosis and treatment for liver cancer. World J. Gastrointest. Oncol. 2022, 14, 334–347. [Google Scholar] [CrossRef]
- Guru, K.T.P.; Sreeja, J.S.; Dharmapal, D.; Sengupta, S.; Basu, P.K. Novel Gold Nanoparticle-Based Quick Small-Exosome Isolation Technique from Serum Sample at a Low Centrifugal Force. Nanomaterials 2022, 12, 1660. [Google Scholar] [CrossRef]
- Kang, C.; Han, P.; Lee, J.S.; Lee, D.; Kim, D. Anchor, Spacer, and Ligand-Modified Engineered Exosomes for Trackable Targeted Therapy. Bioconjug. Chem. 2020, 31, 2541–2552. [Google Scholar] [CrossRef]
- Cheravi, M.; Baharara, J.; Yaghmaei, P.; Roudbari, N.H. Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process. Curr. Stem Cell Res. Ther. 2024, 19, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Vaiselbuh, S.R. CD19 Chimeric Antigen Receptor-Exosome Targets CD19 Positive B-lineage Acute Lymphocytic Leukemia and Induces Cytotoxicity. Cancers 2021, 13, 1401. [Google Scholar] [CrossRef]
- Gu, C.; Feng, J.; Waqas, A.; Deng, Y.; Zhang, Y.; Chen, W.; Long, J.; Huang, S.; Chen, L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front. Cell Dev. Biol. 2021, 9, 709204. [Google Scholar] [CrossRef]
- Chaput, N.; Schartz, N.E.C.; André, F.; Taiėb, J.; Novault, S.; Bonnaventure, P.; Aubert, N.; Bernard, J.; Lemonnier, F.; Merad, M.; et al. Exosomes as Potent Cell-Free Peptide-Based Vaccine. II. Exosomes in CpG Adjuvants Efficiently Prime Naive Tc1 Lymphocytes Leading to Tumor Rejection. J. Immunol. 2004, 172, 2137–2146. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Rodriguez, L.; Dilsiz, N.; Barea, R.; Ziarati, P.; Hochwimmer, B.; Zayas Tamayo, A.; Lambert Brown, D. The Algorithms Cruz Rodriguez (CR) are Proposing A Novel Vaccine RNA-Peptide against Breast, Ovarian, and Lung Cancers Disease: Exosomes as Carrier in Cancer Progression and Metastasis. J. Med.-Clin. Res. Rev. 2021, 5, 1–16. [Google Scholar]
- Tang, X.J.; Sun, X.Y.; Huang, K.M.; Zhang, L.; Yang, Z.S.; Zou, D.D.; Wang, B.; Warnock, G.L.; Dai, L.-J.; Luo, J. Therapeutic potential of CAR-T cell-derived exosomes: A cell-free modality for targeted cancer therapy. Oncotarget 2015, 6, 44179–44190. [Google Scholar] [CrossRef]
- Yang, P.; Cao, X.; Cai, H.; Feng, P.; Chen, X.; Zhu, Y.; Yang, Y.; An, W.; Yang, Y.; Jie, J. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell. Immunol. 2021, 360, 104262. [Google Scholar] [CrossRef]
- Selvam, S.; Ben Thomas, M.; Bhowmick, T.; Chandru, A. Bioprinting of exosomes: Prospects and challenges for clinical applications. Int. J. Bioprinting 2023, 9, 690. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, L.; Wang, Y.; Tao, M.; Xie, Z.; Xia, C.; Gu, C.; Chen, J.; Qiu, P.; Mei, S.; et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 2019, 9, 2439–2459. [Google Scholar] [CrossRef]
Category | Method | Mechanism | Advantages | Limitations | Applications |
---|---|---|---|---|---|
Passive Loading | Incubation | Spontaneous diffusion of lipophilic drugs into exosomal membranes. | Simple and preserves exosome integrity. | Low efficiency for hydrophilic drugs. | Lipophilic drug delivery (e.g., paclitaxel). |
Freeze–Thaw Cycles | Repeated freezing–thawing disrupts membrane integrity to enhance drug uptake. | Higher loading efficiency. | Exosome destabilization and aggregation. | Hydrophilic drug loading (e.g., doxorubicin). | |
Surfactant-Assisted Method | Mild detergents (e.g., saponin) transiently permeabilize membranes. | Suitable for hydrophilic drugs. | Residual surfactants impair exosome function. | Hydrophilic cargo delivery. | |
Active Loading | Electroporation | Electrical pulses destabilize membranes to load nucleic acids (siRNA, CRISPR). | High efficiency for macromolecules. | Aggregation and reduced cargo stability. | Nucleic acid delivery. |
Sonication | Ultrasonic waves perturb membranes for drug diffusion. | High encapsulation efficiency. | Membrane damage. | Hydrophilic/hydrophobic drug loading. | |
Transfection | Nucleic acids are delivered into parent cells for exosome packaging. | Suitable for gene therapy. | Cytotoxicity risk. Requires optimization to preserve exosome integrity. | Gene therapy (e.g., plasmid DNA delivery). | |
Cargo-Specific Optimization | Hydrophobic Drug Integration | Hydrophobic drugs embed into lipid bilayers (e.g., paclitaxel). | High retention. | Limited to lipophilic drugs. | Cancer therapy. |
Charge/Size Optimization | Loading conditions are adjusted for charged/large molecules. | Improves encapsulation. | Requires tailored protocols. | Delivery of charged/large therapeutics. | |
Surface Functionalization | Click Chemistry | Bio-orthogonal reactions for ligand conjugation (e.g., SPAAC). | Site-specific ligand attachment. | Requires chemical modification. | Cancer-targeting and imaging. |
Avidin–Biotin Interaction | High-affinity binding for antibody conjugation. | Rapid and stable ligand attachment. | In vivo stability. | Tumor-targeted delivery. | |
Genetic Modification | Engineering parent cells to express targeting ligands on exosomes. | High specificity (e.g., Lamp2b fusion). | Complex workflow. | Targeted siRNA delivery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Premchandani, T.; Tatode, A.; Taksande, J.; Umekar, M.; Qutub, M.; Hussain, U.M.; Singanwad, P. Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy. Drugs Drug Candidates 2025, 4, 19. https://doi.org/10.3390/ddc4020019
Premchandani T, Tatode A, Taksande J, Umekar M, Qutub M, Hussain UM, Singanwad P. Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy. Drugs and Drug Candidates. 2025; 4(2):19. https://doi.org/10.3390/ddc4020019
Chicago/Turabian StylePremchandani, Tanvi, Amol Tatode, Jayshree Taksande, Milind Umekar, Mohammad Qutub, Ujban Md Hussain, and Priyanka Singanwad. 2025. "Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy" Drugs and Drug Candidates 4, no. 2: 19. https://doi.org/10.3390/ddc4020019
APA StylePremchandani, T., Tatode, A., Taksande, J., Umekar, M., Qutub, M., Hussain, U. M., & Singanwad, P. (2025). Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy. Drugs and Drug Candidates, 4(2), 19. https://doi.org/10.3390/ddc4020019