Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Principle of Strategy
3.2. Characterization of Assay Process
3.3. Comparison of PAP- and TdT-Based SIEP
3.4. Optimization of Experimental Conditions
3.5. Calibration Curves for MiRNAs Detection
3.6. Precision and Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Chen, J.; Yang, S.; Zhang, T.; Xia, X.; Zhang, K.; Deng, S.; He, G.; Gao, H.; He, Q.; et al. CRISPR/Cas14a-based isothermal amplification for profiling plant microRNAs. Anal. Chem. 2021, 93, 12602–12608. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Tang, Y.; Miao, P. Quantification of multiplex miRNAs by mass spectrometry with duplex-specific nuclease-mediated amplification. Anal. Chem. 2023, 95, 11578–11582. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, J.; Xiao, B.; Sun, X.; Xie, R.; Chen, A. Recent advances in the rapid detection of microRNA with lateral flow assays. Biosens. Bioelectron. 2022, 211, 114345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, Z.; Yang, G.; You, L.; Zhang, T.; Zhao, Y. MicroRNA-27a (miR-27a) in solid tumors: A review based on mechanisms and clinical observations. Front. Oncol. 2019, 9, 893. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeon, T.Y.; Choi, C.I.; Kim, D.H.; Kim, D.H.; Kim, G.H.; Ryu, D.Y.; Lee, B.E.; Kim, H.H. Validation of circulating miRNA biomarkers for predicting lymph node metastasis in gastric cancer. J. Mol. Diagn. 2013, 15, 661–669. [Google Scholar] [CrossRef]
- Koscianska, E.; Starega-Roslan, J.; Sznajder, L.J.; Olejniczak, M.; Galka-Marciniak, P.; Krzyzosiak, W.J. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol. Biol. 2011, 12, 14. [Google Scholar] [CrossRef]
- Canning, A.J.; Chen, X.; Li, J.Q.; Jeck, W.R.; Wang, H.-N.; Vo-Dinh, T. miRNA probe integrated biosensor platform using bimetallic nanostars for amplification-free multiplexed detection of circulating colorectal cancer biomarkers in clinical samples. Biosens. Bioelectron. 2023, 220, 114855. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, S.; Feng, Q.; Zhou, Y.; Jin, L.; Sun, J.; Chen, Y.; Jia, K.; Chu, L. Target recognition initiated self-dissociation based DNA nanomachine for sensitive and accurate MicroRNA (miRNA) detection. Anal. Biochem. 2023, 662, 115014. [Google Scholar] [CrossRef]
- Tran, H.V.; Piro, B. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Microchim. Acta 2021, 188, 128. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, Z. Detection of microRNAs using electrocatalytic nanoparticle tags. Anal. Chem. 2006, 78, 1470–1477. [Google Scholar] [CrossRef]
- Gao, Z.; Yu, Y.H. Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens. Bioelectron. 2007, 22, 933–940. [Google Scholar] [CrossRef]
- Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal. Biochem. 2019, 581, 113349. [Google Scholar] [CrossRef]
- Labib, M.; Khan, N.; Ghobadloo, S.M.; Cheng, J.; Pezacki, J.P.; Berezovski, M.V. Three-mode electrochemical sensing of ultralow microRNA levels. J. Am. Chem. Soc. 2013, 135, 3027–3038. [Google Scholar] [CrossRef]
- Liu, L.; Xia, N.; Liu, H.; Kang, X.; Liu, X.; Xue, C.; He, X. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens. Bioelectron. 2014, 53, 399–405. [Google Scholar] [CrossRef]
- Miao, P.; Wang, B.; Yu, Z.; Zhao, J.; Tang, Y. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification. Biosens. Bioelectron. 2015, 63, 365–370. [Google Scholar] [CrossRef]
- Zhu, W.; Su, X.; Gao, X.; Dai, Z.; Zou, X. A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes. Biosens. Bioelectron. 2014, 53, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Bekmezci, M.; Bayat, R.; Coguplugil, Z.K.; Sen, F.; Karimi, F.; Karimi-Maleh, H. Mobile device integrated graphene oxide quantum dots based electrochemical biosensor design for detection of miR-141 as a pancreatic cancer biomarker. Electrochim. Acta 2022, 435, 141390. [Google Scholar] [CrossRef]
- Tran, H.V.; Piro, B.; Reisberg, S.; Huy Nguyen, L.; Dung Nguyen, T.; Duc, H.T.; Pham, M.C. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens. Bioelectron. 2014, 62, 25–30. [Google Scholar] [CrossRef]
- Wu, X.; Chai, Y.; Yuan, R.; Zhuo, Y.; Chen, Y. Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sensor. Actuat. B-Chem. 2014, 203, 296–302. [Google Scholar] [CrossRef]
- Gan, X.; Qiu, F.; Yuan, R.; Xiang, Y. Biobarcode and sequence-responsive DNA nanocapsules for label-free and sensitive electrochemical detection of circulating tumor cells. Sensor. Actuat. B-Chem. 2022, 368, 132207. [Google Scholar] [CrossRef]
- Wang, J.; Kawde, A.-N. Amplified label-free electrical detection of DNA hybridization. Analyst 2002, 127, 383–386. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Rasul Jan, M.; Zhu, Q. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun. 2003, 5, 1000–1004. [Google Scholar] [CrossRef]
- Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J.C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030. [Google Scholar] [CrossRef]
- Miao, P.; Wang, B.; Meng, F.; Yin, J.; Tang, Y. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode. Bioconjugate Chem. 2015, 26, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tang, M.; Diao, W.; Cheng, W.; Zhang, Y.; Yan, Y. Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim. Acta 2016, 183, 3061–3067. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Li, B.; Liu, J.; Xu, J.-J.; Chen, H.-Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal. Chem. 2021, 93, 6120–6127. [Google Scholar] [CrossRef]
- Yuan, Y.-H.; Wu, Y.-D.; Chi, B.-Z.; Wen, S.-H.; Liang, R.-P.; Qiu, J.-D. Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens. Bioelectron. 2017, 97, 325–331. [Google Scholar] [CrossRef]
- Cheng, H.; Li, W.; Duan, S.; Peng, J.; Liu, J.; Ma, W.; Wang, H.; He, X.; Wang, K. Mesoporous silica containers and programmed catalytic hairpin assembly/hybridization chain reaction based electrochemical sensing platform for microRNA ultrasensitive detection with low background. Anal. Chem. 2019, 91, 10672–10678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, Y.; Yang, C.; Xu, H.; Luo, J.; Zhang, W.; Tang, X.; Yang, S.; Fu, W.; Chang, K.; et al. A label-free electrochemical biosensor for microRNAs detection based on DNA nanomaterial by coupling with Y-shaped DNA structure and non-linear hybridization chain reaction. Biosens. Bioelectron. 2019, 126, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Tang, Y. Cascade strand displacement and bipedal walking based DNA logic system for miRNA diagnostics. ACS Cent. Sci. 2021, 7, 1036–1044. [Google Scholar] [CrossRef]
- Hasoň, S.; Fojta, M.; Ostatná, V. Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes. J. Electroanal. Chem. 2019, 847, 113252. [Google Scholar] [CrossRef]
- Tjong, V.; Yu, H.; Hucknall, A.; Rangarajan, S.; Chilkoti, A. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization. Anal. Chem. 2011, 83, 5153–5159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H.; Zhao, X.; Tang, X.; Yang, S.; Yu, L.; Zhao, S.; Chang, K.; Chen, M. 3D DNA nanonet structure coupled with target-catalyzed hairpin assembly for dual-signal synergistically amplified electrochemical sensing of circulating microRNA. Anal. Chim. Acta 2020, 1122, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Povedano, E.; Ruiz-Valdepeñas Montiel, V.; Gamella, M.; Serafín, V.; Pedrero, M.; Moranova, L.; Bartosik, M.; Montoya, J.J.; Yáñez-Sedeño, P.; Campuzano, S.; et al. A novel zinc finger protein–based amperometric biosensor for miRNA determination. Anal. Bioanal. Chem. 2019, 412, 5031–5041. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, L.; Zeng, L.; Wang, Y.; Weng, Y.; Liao, Y.; Chen, T.; Xia, Y.; Zhang, J.; Chen, J. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA. Talanta 2020, 207, 120298. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, W.; Zhao, D.; Hao, Q.; Li, J.; Huang, J.; Shi, J.; Chao, J.; Su, S.; Wang, L. Label-free electrochemical sensing platform for microRNA-21 detection using thionine and gold nanoparticles Co-functionalized MoS2 Nanosheet. ACS Appl. Mater. Inter. 2017, 9, 35597–35603. [Google Scholar] [CrossRef]
- Tian, R.; Li, Y.; Bai, J. Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs. Anal. Chim. Acta 2019, 1058, 89–96. [Google Scholar] [CrossRef]
Name | Sequences (5′ → 3′) |
---|---|
miR-27a | UUCACAGUGGCUAAGUUCCGC |
miR-27b 1 | UUCACAGUGGCUAAGUUCUGC |
N.C. miRNA (miR-10a) | UACCCUGUAGA UCCGAAUUUGUG |
DNA primer (DP) | NH2-CCCATAAAGTAGAAAGCACTA |
RNA primer (RP) | NH2-CCCAUAAAGUAGAAAGCACUA |
Molecular beacon 2 | FAM-CGCTCGGCGGAACTTAGCCACTGTGAACGAGCG-DABCYL |
Hairpin probe (HP) | biotin-CGCTCGGCGGAACTTAGCCACTGTGAACGAGCG-NH2 |
Electrodes | Detection Technique | Linear Range | LOD | References |
---|---|---|---|---|
Probes/Au | CV, DPV | 10 fM–1 nM | 3.608 fM | [33] |
SPCE | Amperometry | 3–100 nM | 0.91 nM | [34] |
Probes/FTO-Au nanoparticle chips | DPV | 5 fM–100 pM | 2.2 fM | [26] |
Probes/PLLy/GCE | ESI | 10–70 fM | 2.3 fM | [35] |
MoS2-Thi-AuNPs nanocomposite/GCE | SWV | 1–10,000 pM | 0.26 pM | [36] |
MoS2/AuNPs/AgNW paper electrode | SWV | 1 fM–1 nM | 0.1 fM | [37] |
Unmodified pencil-working electrodes | SWV | 4–350 fM | 800 aM or 120 aM (+ Cu2+) | This work |
Sample | Content/fM | Added/fM | Found/fM | Recovery/% |
---|---|---|---|---|
miR-27a | 16.0 | 5.0 | 19.3 | 91.9 |
miR-27a | 50.0 | 25.0 | 82.0 | 100.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Xu, Y.; Zhang, Y.; Liu, S.-Y.; Dai, Z.; Zou, X. Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement. Targets 2023, 1, 79-90. https://doi.org/10.3390/targets1020007
Zhu W, Xu Y, Zhang Y, Liu S-Y, Dai Z, Zou X. Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement. Targets. 2023; 1(2):79-90. https://doi.org/10.3390/targets1020007
Chicago/Turabian StyleZhu, Wenyuan, Yuzhi Xu, Yanfei Zhang, Si-Yang Liu, Zong Dai, and Xiaoyong Zou. 2023. "Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement" Targets 1, no. 2: 79-90. https://doi.org/10.3390/targets1020007
APA StyleZhu, W., Xu, Y., Zhang, Y., Liu, S. -Y., Dai, Z., & Zou, X. (2023). Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement. Targets, 1(2), 79-90. https://doi.org/10.3390/targets1020007