Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants
Abstract
:1. Introduction
2. Importance of Natural Antioxidants
3. Essential Oils from Apiaceae Plants as a Source of Natural Antioxidants
4. Methods to Evaluate the Antioxidant Potential of Essential Oils
5. Antioxidant Activity of Some Apiaceae Plants
5.1. Coriander
5.2. Caraway
5.3. Celery
5.4. Fennel
5.5. Anise
6. Applications of Antioxidants of Essential Oils from the Apiaceae Family and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an Important Source of Antioxidants and Their Applications. Cosmetics 2021, 8, 111. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal Family as Source for Industrial Uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef]
- Sharma, N.; Tan, M.A.; An, S.S.A. Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease. Antioxidants 2021, 10, 1571. [Google Scholar] [CrossRef]
- Thiviya, P.; Gunawardena, N.; Gamage, A.; Madhujith, T.; Merah, O. Apiaceae Family as a Valuable Source of Biocidal Components and Their Potential Uses in Agriculture. Horticulturae 2022, 8, 614. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential Oil from Coriandrum sativum: A Review on Its Phytochemistry and Biological Activity. Molecules 2023, 28, 696. [Google Scholar] [CrossRef]
- Konfo, T.R.C.; Djouhou, F.M.C.; Koudoro, Y.A.; Dahouenon-Ahoussi, E.; Avlessi, F.; Sohounhloue, C.K.D.; Simal-Gandara, J. Essential oils as natural antioxidants for the control of food preservation. Food Chem. Adv. 2023, 2, 100312. [Google Scholar] [CrossRef]
- Tit, D.M.; Bungau, S.G. Antioxidant Activity of Essential Oils. Antioxidants 2023, 12, 383. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Tița, O.; Constantinescu, M.A.; Tița, M.A.; Opruța, T.I.; Dabija, A.; Georgescu, C. Valorization on the Antioxidant Potential of Volatile Oils of Lavandula angustifolia Mill., Mentha piperita L. and Foeniculum vulgare L. in the Production of Kefir. Appl. Sci. 2022, 12, 10287. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi l. And Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alotaibi, B.M. Essential Oils of Some Medicinal Plants and Their Biological Activities: A Mini Review. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 40–49. [Google Scholar] [CrossRef]
- Ihamdane, R.; Haida, S.; Oubihi, A.; Zelmat, L.; Tiskar, M.; Outemsaa, B.; Chaouch, A. Chemical Composition, Antibacterial and Antioxidant Activities of Moroccan Daucus carota Essential Oils. E3S Web Conf. 2021, 319, 01070. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Nieto, G. Biological Activities of Three Essential Oils of the Lamiaceae Family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef]
- Ouis, N.; Hariri, A. Antioxidant Properties of the Aerial Part of Celery and Flaxseeds. Agric. Conspec. Sci. 2023, 88, 207–213. [Google Scholar]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Önder, A. Coriander and Its Phytoconstituents for the Beneficial Effects. In Potential of Essential Oils; InTech: London, UK, 2018. [Google Scholar]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Dias dos Santos, S.M.; Pintado, M.E.; Pérez-álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chemical Composition and In Vitro Antimicrobial, Antifungal and Antioxidant Properties of Essential Oils Obtained from Some Herbs Widely Used in Portugal. Food Control 2013, 32, 371–378. [Google Scholar] [CrossRef]
- Ghasemi, G.; Fattahi, M.; Alirezalu, A.; Ghosta, Y. Antioxidant and Antifungal Activities of a New Chemovar of Cumin (Cuminum cyminum L.). Food Sci Biotechnol 2019, 28, 669–677. [Google Scholar] [CrossRef]
- Salimi, F.; Fattahi, M.; Hamzei, J. Phenolic Contents, Composition and Antioxidant Activity of Essential Oils Obtained from Iranian Populations of Apium Graveolens, and Their Canonical Correlation with Environmental Factors. Biochem. Syst. Ecol. 2022, 101, 104394. [Google Scholar] [CrossRef]
- Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Verdin, A.; Mistrulli, L.; Laruelle, F.; Fourmentin, S.; Lounès-Hadj Sahraoui, A. Chemical Composition, Antioxidant and Anti-Inflammatory Activities of Clary Sage and Coriander Essential Oils Produced on Polluted and Amended Soils-Phytomanagement Approach. Molecules 2021, 26, 5321. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) Essential Oil: Chemistry and Biological Activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
- Jeya, K.; Veerapagu, M.; Sangeetha, V. Antimicrobial and antioxidant properties of Coriandrum sativum L. seed essential oil. Am. J. Essent. Oils Nat. Prod. 2019, 7, 6–10. [Google Scholar]
- Gajić, I.; Stanojević, L.; Dinić, A.; Stanojević, J.; Nikolić, L.; Nikolić, V.; Savić, V. The chemical composition of the essential oil and volatile compounds from caraway fruit (Carum carvi L.) extracted by headspace-solid phase microextraction and the antioxidant activity. Adv. Technol. 2020, 9, 37–43. [Google Scholar] [CrossRef]
- Shosha, N.N.H.; Fahmy, N.M.; Singab, A.N.B.; Mohamed, R.W. Anti-Ulcer Effects of Cumin (Cuminum cyminum L.), Thyme (Thymus vulgaris L.), and Caraway (Carum carvi L.) Essential Oils on Peptic Ulcer and Ulcerative Colitis Models in Rats. J. Herbmed Pharmacol. 2022, 11, 389–400. [Google Scholar] [CrossRef]
- Yakoubi, S.; Bourgou, S.; Mahfoudhi, N.; Hammami, M.; Khammassi, S.; Horchani-Naifer, K.; Msaada, K.; Tounsi, M.S. Oil-in-Water Emulsion Formulation of Cumin/Carvi Essential Oils Combination with Enhanced Antioxidant and Antibacterial Potentials. J. Essent. Oil Res. 2020, 32, 536–544. [Google Scholar] [CrossRef]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. GC-MS Profiling, Vibriocidal, Antioxidant, Antibiofilm, and Anti-Quorum Sensing Properties of Carum carvi L. Essential Oil: In Vitro and In Silico Approaches. Plants 2022, 11, 1072. [Google Scholar] [CrossRef]
- Bat-Özmatara, M. The antioxidant activity of Apium graveolens 1. Int. J. Food Eng. Res. 2020, 6, 17–33. [Google Scholar]
- Beltrán Sanahuja, A.; Ponce Landete, M.; Domingo Martínez, M.I.; Prats Moya, M.S.; Valdés García, A. Optimization of Volatile Compounds Extraction from Industrial Celery (Apium graveolens) By-Products by Using Response Surface Methodology and Study of Their Potential as Antioxidant Sources. Foods 2021, 10, 2664. [Google Scholar] [CrossRef]
- Hossam El-Beltagi, S.; Dhawi, F.; Amina Aly, A.; Abeer El-Ansary, E. Chemical Compositions and Biological Activities of the Essential Oils from Gamma Irradiated Celery (Apium graveolens L.) Seeds. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2114–2133. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Alam, P.; Alkholifi, F.K.; Yusufoglu, H.S. Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia. Molecules 2021, 26, 7372. [Google Scholar] [CrossRef]
- El-Zaher, H.M.; Eid, S.Y.; Shaaban, M.M.; Ahmed-Farid, O.A.; Abd El Tawab, A.M.; Khattab, M.S.A. Ovarian Activity and Antioxidant Indices during Estrous Cycle of Barki Ewes under the Effect of Thyme, Celery, and Salinomycin as Feed Additives. Zygote 2021, 29, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Nasır, A.; Yabalak, E. Investigation of Antioxidant, Antibacterial, Antiviral, Chemical Composition, and Traditional Medicinal Properties of the Extracts and Essential Oils of the Pimpinella Species from a Broad Perspective: A Review. J. Essent. Oil Res. 2021, 33, 411–426. [Google Scholar] [CrossRef]
- Dąbrowska, J.A.; Kunicka-Styczyńska, A.; Śmigielski, K.B. Biological, Chemical, and Aroma Profiles of Essential Oil from Waste Celery Seeds (Apium graveolens L.). J. Essent. Oil Res. 2020, 32, 308–315. [Google Scholar] [CrossRef]
- Zorga, J.; Kunicka-Styczyńska, A.; Gruska, R.; Śmigielski, K. Ultrasound-Assisted Hydrodistillation of Essential Oil from Celery Seeds (Apium graveolens L.) and Its Biological and Aroma Profiles. Molecules 2020, 25, 5322. [Google Scholar] [CrossRef] [PubMed]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J. Evid.-Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Yaldiz, G.; Camlica, M. Variation in the Fruit Phytochemical and Mineral Composition, and Phenolic Content and Antioxidant Activity of the Fruit Extracts of Different Fennel (Foeniculum vulgare L.) Genotypes. Ind. Crops Prod. 2019, 142, 111852. [Google Scholar] [CrossRef]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, H.; Cerny, M.; Chokr, A.; Kanaan, H.; Merah, O. Fennel seed oil and by-products characterization and their potential applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef]
- Mehra, N.; Tamta, G.; Nand, V. A Review on Nutritional Value, Phytochemical and Pharmacological Attributes of Foeniculum vulgare Mill. J. Pharmacogn. Phytochem. 2021, 10, 1255–1263. [Google Scholar] [CrossRef]
- Šunić, L.; Ilić, Z.S.; Stanojević, L.; Milenković, L.; Stanojević, J.; Kovač, R.; Milenković, A.; Cvetković, D. Comparison of the Essential Oil Content, Constituents and Antioxidant Activity from Different Plant Parts during Development Stages of Wild Fennel (Foeniculum vulgare Mill.). Horticulturae 2023, 9, 364. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Badar Ul Ain, H.; Awuchi, C.G. Pharmacological, Nutraceutical, Functional and Therapeutic Properties of Fennel (Foeniculum vulgare). Int. J. Food Prop. 2023, 26, 915–927. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Bouhlali, E.d.T.; Derouich, M.; El-Rhaffari, L. Essential Oil and Chemical Composition of Wild and Cultivated Fennel (Foeniculum vulgare Mill.): A Comparative Study. S. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative Analysis of Antioxidant Activities of Essential Oils and Extracts of Fennel (Foeniculum vulgare Mill.)Seeds from Egypt and China. Food Sci. Hum. Wellness 2019, 8, 67–72. [Google Scholar] [CrossRef]
- Sabzi Nojadeh, M.; Pouresmaeil, M.; Younessi-Hamzekhanlu, M.; Venditti, A. Phytochemical Profile of Fennel Essential Oils and Possible Applications for Natural Antioxidant and Controlling Convolvulus arvensis L. Nat. Prod. Res. 2021, 35, 4164–4168. [Google Scholar] [CrossRef]
- Chen, F.; Guo, Y.; Kang, J.; Yang, X.; Zhao, Z.; Liu, S.; Ma, Y.; Gao, W.; Luo, D. Insight into the Essential Oil Isolation from Foeniculum vulgare Mill. Fruits Using Double-Condensed Microwave-Assisted Hydrodistillation and Evaluation of Its Antioxidant, Antifungal, and Cytotoxic Activity. Ind. Crops Prod. 2020, 144, 112052. [Google Scholar] [CrossRef]
- Milenković, A.; Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Lalević, D.; Stanojević, J.; Danilović, B.; Cvetković, D. Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae 2022, 8, 1015. [Google Scholar] [CrossRef]
- Karik, Ü.; Demirbolat, I. Chemical Composition, Antioxidant and Antimicrobial Activities of Pimpinella Enguezekensis: A Novel Species from Anatolia, Turkey- Fruit Essential Oil. J. Essent. Oil-Bear. Plants 2020, 23, 356–362. [Google Scholar] [CrossRef]
- Lotfy, S.N.; Ahmed, M.Y.S.; Saad, R.; Abd El-Aleem, F.S.; Fadel, H.H.M. Effects of Ultrasonic and Microwave Pretreatments on the Extraction Yield, Chemical Composition and Antioxidant Activity of Hydrodistilled Essential Oil from Anise (Pimpinella anisum L). Egypt. J. Chem. 2022, 65, 455–465. [Google Scholar] [CrossRef]
- Ouis, N.; Hariri, A. Chemical Analysis, Antioxidant and Antibacterial Activities of Aniseeds Essential Oil. Agric. Conspec. Sci. 2021, 86, 337–348. [Google Scholar]
- Bettaieb Rebey, I.; Aidi Wannes, W.; Kaab, S.B.; Bourgou, S.; Tounsi, M.S.; Ksouri, R.; Fauconnier, M.L. Bioactive Compounds and Antioxidant Activity of Pimpinella anisum L. Accessions at Different Ripening Stages. Sci. Hortic. 2019, 246, 453–461. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Ahmed, N.; Selim, S.; Al-Khalaf, A.A.; El Nahhas, N.; Abdel-Hafez, S.H.; Sayed, S.; Emam, H.M.; Ibrahim, M.A.R. Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch). Agriculture 2022, 12, 224. [Google Scholar] [CrossRef]
- Pedro, S.; Pereira, L.; Domingues, F.; Ramos, A.; Luís, Â. Optimization of Whey Protein-Based Films Incorporating Foeniculum vulgare Mill. Essential Oil. J. Funct. Biomater. 2023, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Šojić, B.; Pavlić, B.; Ikonić, P.; Tomović, V.; Ikonić, B.; Zeković, Z.; Kocić-Tanackov, S.; Jokanović, M.; Škaljac, S.; Ivić, M. Coriander Essential Oil as Natural Food Additive Improves Quality and Safety of Cooked Pork Sausages with Different Nitrite Levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef] [PubMed]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Evon, P.; Hijazi, A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Arigò, A.; Dugo, P.; Rigano, F.; Mondello, L. Linear Retention Index Approach Applied to Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry to Determine Oxygen Heterocyclic Compounds at Trace Level in Finished Cosmetics. J. Chromatogr. A 2021, 1649, 462183. [Google Scholar] [CrossRef]
Antioxidant Capacity Test | Principle of the Method | End Product Determination |
---|---|---|
Oxygen radical absorption capacity (ORAC) | Antioxidant reaction with peroxyl radicals, induced by 2,20-azobis-2-amidino-propane (AAPH) | Loss of fluorescence of fluorescein |
Hydroxyl radical antioxidant capacity (HORAC) | Antioxidant capacity to quench OH radicals generated by a Co (II)-based Fenton-like system | Loss of fluorescence of fluorescein |
Tartrate-resistant acid phosphatase (TRAP) | Antioxidant capacity to scavenge luminol-derived radicals, generated from AAPH decomposition | Chemiluminescence quenching |
Cupric ion-reducing antioxidant capacity assay (CUPRAC) | Cu (II) reduction to Cu (I) by antioxidants | Colorimetry |
Ferric-reducing antioxidant power (FRAP) | Antioxidant reaction with a Fe (III) complex | Colorimetry |
Potassium ferricyanide-reducing antioxidant power (PFRAP) | Potassium ferricyanide reduction by antioxidants and subsequent reaction of potassium ferrocyanide with Fe3+ | Colorimetry |
ABTS | Antioxidant reaction with an organic cation radical | Colorimetry |
2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity | Antioxidant reaction with an organic radical | Colorimetry |
Source | Composition | Geographical Location |
---|---|---|
Seeds | Linalool (58.0–80.3%), γ-terpinene (0.3–11.2%), α-pinene (0.2–10.9%), p-cymene (0.1–8.1%), camphor (3.0–5.1%), and geranyl acetate (0.2–5.4%) | Europe |
Flowers | Benzofuran,2,3-dihydro (15.4%), hexadecanoic acid, methyl ester (10.32%), 2,4a-epioxy-3,4,5,6,7,8,-hexahydro-2,5,5,8a-tetramethyl-2h-1-benzofuran (9.35%), 2-methyoxy-4-vinylphenol (8.8%), 2,3,5,6-tetrafluroanisole (8.62%), 2,6-dimethyl-3-aminobenzoquinone (6.81%), and dodecanoic acid (5%) | India |
Leaves | Decanal (19.09%), trans-2-decenal (17.54%), 2-decen-1-ol (12.33%), cyclodecane (12.15%), cis-2-dodecena (10.72%), dodecanal (4.1%), and dodecan-1-ol (3.13%) | Brazil |
Chemical Group | Composition |
---|---|
Alcohols | Linalool (60–80%), geraniol (1.2–4.6%), terpinen-4-ol (3%), α-terpineol (0.5%) |
Hydrocarbons | γ-terpinene (1–8%), r-cymene (3.5%), limonene (0.5–4.0%), α-pinene (0.2–8.5%), camphene (1.4%), myrcene (0.2–2.0%) |
Ketones | Camphor (0.9–4.9%) |
Esters | Geranyl acetate (0.1–4.7%), linalyl acetate (0–2.7%) |
DPPH IC50 (µg/mL) | Superoxide Anion IC50 (µg/mL) | Reducing Power EC50 (µg/mL) | Chelating Power EC50 (µg/mL) | β-Carotene IC50 (µg/mL) | |
---|---|---|---|---|---|
C. sativum | 38.83 ± 0.76 a | 37.00 ± 1.73 a | 24.00 ± 1.53 a | 23.00 ± 1.00 a | 25.70 ± 1.02 a |
C. carvi | 34.00 ± 3.46 b | 28.00 ± 7.00 b | 18.00 ± 1.00 b | 36.33 ± 4.10 b | 19.00 ± 2.16 b |
Mixture | 19.00 ± 1.00 c | 10.33 ± 0.58 c | 11.33 ± 1.53 c | 31.33 ± 0.47 b | 11.16 ± 0.84 c |
BHT | 11.5 ± 0.62 d | 1.60 ± 0.20 d | 23.00 ± 1.00 a | 4.60 ± 1.60 d | |
EDTA | 32.50 ± 1.32 b |
Part | Antioxidant Activity | Reference |
---|---|---|
Aerial part EO | DPPH radical 84 ± 0.4% at a concentration of 1000 µg/mL | [15] |
Celery seed | DPPH radical scavenging activity EC50 (mg/mL) with 10.04 ± 0.39 | [36] |
Celery seed EO from waste celery seeds | Concentration causing 50% inhibition of DPHH is IC50 = 89.1 g/L | [37] |
Sonicated celery seeds | EO at concentrations between 2.5 and 100 g/L quenched the stable free radical DPPH in a range between 34 and 52%, and 50% inhibition of DPPH radical at 81.63 g/L | [38] |
Whole plant | The value of IC50 concentration that inhibits 50% of the DPPH radical was 88.2 mg/mL FRAP test results showed no reducing capacity at concentrations lower than 2.5 mg/mL inhibition of the formation of TBARs 88.15% of EO concentration of 20 mg/mL | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakodi, Y.; Thiviya, P.; Gamage, A.; Evon, P.; Madhujith, T.; Merah, O. Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants. Agrochemicals 2024, 3, 57-69. https://doi.org/10.3390/agrochemicals3010006
Jayakodi Y, Thiviya P, Gamage A, Evon P, Madhujith T, Merah O. Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants. Agrochemicals. 2024; 3(1):57-69. https://doi.org/10.3390/agrochemicals3010006
Chicago/Turabian StyleJayakodi, Yasasvi, Punniamoorthy Thiviya, Ashoka Gamage, Philippe Evon, Terrence Madhujith, and Othmane Merah. 2024. "Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants" Agrochemicals 3, no. 1: 57-69. https://doi.org/10.3390/agrochemicals3010006
APA StyleJayakodi, Y., Thiviya, P., Gamage, A., Evon, P., Madhujith, T., & Merah, O. (2024). Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants. Agrochemicals, 3(1), 57-69. https://doi.org/10.3390/agrochemicals3010006