Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea?
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Experiment 1
2.2.1. Crop Establishment and Harvest
2.2.2. Soil Characterization
2.2.3. Treatment Application
2.2.4. Sorghum Harvest and Sample Processing
2.2.5. Bromatological Composition Analysis
2.3. Experiment 2
2.3.1. Evaluation of In Situ Digestibility
2.3.2. Incubation
2.3.3. Determination of In Situ Digestibility
2.4. Experimental Design and Statistical Analyses
2.4.1. Experiment 1
2.4.2. Experiment 2
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tulu, D.; Gadissa, S.; Hundessa, F.; Kebede, E. Contribution of climate-smart forage and fodder production for sustainable livestock production and environment: Lessons and challenges from Ethiopia. Adv. Agric. 2023, 8067776. [Google Scholar] [CrossRef]
- Mullenix, K.; Tucker, J. Economics and Feasibility of Legume Inclusion in Southeastern Perennial Grass-Based Systems. J. Anim. Sci. 2021, 99, 35. [Google Scholar] [CrossRef]
- Tahir, M.; Wei, X.; Liu, H.; Li, J.; Zhou, J.; Kang, B.; Jiang, D.; Yan, Y. Mixed legume–grass seeding and nitrogen fertilizer input enhance forage yield and nutritional quality by improving the soil enzyme activities in Sichuan, China. Front. Plant Sci. 2023, 14, 1176150. [Google Scholar] [CrossRef] [PubMed]
- Meza, K.; Vanek, S.J.; Sueldo, Y.; Olivera, E.; Ccanto, R.; Scurrah, M.; Fonte, S.J. Grass–legume mixtures show potential to increase above-and belowground biomass production for Andean forage-based fallows. Agronomy 2022, 12, 142. [Google Scholar] [CrossRef]
- Pinto, P.; Cartoni-Casamitjana, S.; Cureton, C.; Stevens, A.W.; Stoltenberg, D.E.; Zimbric, J.; Picasso, V.D. Intercropping legumes and intermediate wheatgrass increases forage yield, nutritive value, and profitability without reducing grain yields. Front. Sustain. Food Syst. 2022, 6, 977841. [Google Scholar] [CrossRef]
- Xu, R.; Shi, W.; Kamran, M.; Chang, S.; Jia, Q.; Hou, F. A mistura de gramíneas e leguminosas e a aplicação de nitrogênio melhoram o rendimento, a qualidade e a eficiência de utilização de água e nitrogênio das pastagens no planalto de Loess. Front. Ciência Plantas 2023, 14, 1088849. [Google Scholar] [CrossRef]
- Marelja, Z.; Leimkühler, S.; Missirlis, F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front. Physiol. 2018, 9, 50. [Google Scholar] [CrossRef]
- Lilay, G.H.; Thiébaut, N.; du Mee, D.; Assunção, A.G.; Schjoerring, J.K.; Husted, S.; Persson, D.P. Vinculando as principais funções fisiológicas dos micronutrientes essenciais aos seus sintomas de deficiência nas plantas. Novo Fitol. 2024, 242, 881–902. [Google Scholar] [CrossRef]
- Henrique, J.C.G.d.S.; de Oliveira, A.C.; da Silva, T.G.F.; Carvalho, L.H.M.; de Souza, E.J.O.; da Fonseca, G.R.F.; Santos, H.R.B.; Cruz, G.H.d.L. Nitrogen and molybdenum fertilization influence on enzymatic activity and productivity enhancement of forage sorghum under water deficit in the Brazilian semi-arid region. J. Plant Nutr. 2024, 47, 2543–2570. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Guo, Z.; Cao, W.; Gao, L.; Li, Y.; Tian, C.F.; Chen, Q.; Shen, Y.; Ren, F.; et al. Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS Nano 2023, 17, 14761–14774. [Google Scholar] [CrossRef]
- Kumari, P.; Arya, S.; Thant, S.; Kumar, V.; Sharma, B.; Phogat, D. Assessment of quality biomass production potential of forage sorghum hybrids in semi-arid conditions of Haryana. Int. J. Chem. Stud. 2020, 8, 1248–1252. [Google Scholar] [CrossRef]
- Kazungu, F.; Muindi, E.; Mulinge, J. Overview of Sorghum (Sorghum bicolor. L), its Economic Importance, Ecological Requirements and Production Constraints in Kenya. Int. J. Plant Soil Sci. 2023, 35, 62–71. [Google Scholar] [CrossRef]
- Carvalho, M.; Castro, I.; Moutinho-Pereira, J.; Correia, C.; Egea-Cortines, M.; Matos, M.; Rosa, E.; Carnide, V.; Lino-Neto, T. Evaluating stress responses in cowpea under drought stress. J. Plant Physiol. 2019, 241, 153001. [Google Scholar] [CrossRef]
- Carvalho, L.H.M.; Henrique, J.C.G.d.S.; De Oliveira, A.C.; Lisbôa, A.M.G.; Da Fonsêca, G.R.F.; Junior, B.C.; Neto, J.B.; Souto, A.G.d.L.; Silva, G.d.A.; De Carvalho, C.V.R.; et al. Aplicação de molibdênio e nitrogênio promovem maior atividade da redutase do nitrato e crescimento no feijão-caupí irrigado com água salina em ambiente semiárido. Obs. De La Econ. Latinoam. 2024, 22, 3262–3286. [Google Scholar] [CrossRef]
- Marinho, R.D.C.N.; Ferreira, L.D.V.M.; Da Silva, A.F.; Martins, L.M.V.; Nóbrega, R.S.A.; Fernandes-Júnior, P.I. Symbiotic and agronomic efficiency of new cowpea rhizobia from Brazilian semi-arid. Bragantia 2017, 76, 273–281. [Google Scholar] [CrossRef]
- Tesfaye, W.; Zewdu, T. Evaluation of Early Maturing Sorghum and Cowpea Varieties Intercropping for Animal Nutritive Value and in vitro Digestibility in Fedis District, Eastern Ethiopia. Am. J. Agric. For. 2021, 9, 95. [Google Scholar] [CrossRef]
- Mertens, D.R.; Grant, R.J. Digestibility and intake. In Forages: The Science of Grassland Agriculture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 2, pp. 609–631. [Google Scholar] [CrossRef]
- Cappellozza, B.; Bohnert, D.; Reis, M.; Swanson, K.; Falck, S.; Cooke, R. Influence of amount and frequency of protein supplementation to steers consuming low-quality, cool-season forage: Intake, nutrient digestibility, and ruminal fermentation. J. Anim. Sci. 2021, 99, skab112. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Klimate der Erde; Verlag Justus Perthes: Gotha, Germany, 1928. [Google Scholar]
- INMET (Instituto Nacional de Meteorologia). Weather Parameters of Serra Talhada. 2020. Available online: http://www.inmet.gov.br (accessed on 23 May 2020).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Brazilian Soil Classification System, 3rd ed.; Embrapa: Brasília, Brazil, 2013. [Google Scholar]
- Brazilian Agricultural Research Corporation (EMBRAPA). Manual of Methods for Soil Analysis, 2nd ed.; EMBRAPA Soils: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; Rev. 2; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Sniffen, C.J.; Oconnor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds that Contain Non-Protein Nitrogen; Bulletin No. 339; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Nocek, J.E. In situ and other methods to estimate ruminal protein and energy digestibility: A review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Orskov, E.R.; Mcdonald, P. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Mcdonald, I. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci. 1981, 96, 251–252. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants: An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Ostmeyer, T.J.; Bahuguna, R.N.; Kirkham, M.B.; Bean, S.; Jagadish, S.K. Enhancing sorghum yield through efficient use of nitrogen–challenges and opportunities. Front. Plant Sci. 2022, 13, 845443. [Google Scholar] [CrossRef]
- Gao, W.; Shou, N.; Jiang, C.; Ma, R.; Yang, X. Optimizing N application for forage sorghum to maximize yield, quality, and N use efficiency while reducing environmental costs. Agronomy 2022, 12, 2969. [Google Scholar] [CrossRef]
- Filho, L.; Henrique, I.; Arf, O.; Oliveira, D.; Lima, A.; Macedo, M.; Mendes, J.; Oliveira, R. Desempenho do feijão após inoculação com Azospirillum brasilense e Rhizobium tropici e adubações nitrogenadas e molíbicas em condições amazônicas. Semin. Ciências Agrárias 2020, 41, 1177–1188. [Google Scholar] [CrossRef]
- Bursakov, S.A.; Kroupin, P.Y.; Karlov, G.I.; Divashuk, M.G. Tracing the Element: The Molecular Bases of Molybdenum Homeostasis in Legumes. Agronomy 2023, 13, 2300. [Google Scholar] [CrossRef]
- Oliveira, V.S.; Santana Neto, J.A.; Valença, R.L.; Silva, B.C.D.; Santos, A.C.P. Fibrous carbohydrate concentration and non-fibrous ruminants in diet and its effects on microbiota ruminal. Veterinária Notícias 2016, 22, 1–18. [Google Scholar] [CrossRef]
- Hasanah, Y.; Hanum, H.; Harahap, N.; Harahap, A. The role of Molybdenum in relation to Rhizobium sp. in increasing biological Nitrogen fixation and soybean growth. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2023; Volume 1241. [Google Scholar] [CrossRef]
- Huang, X.Y.; Hu, D.W.; Zhao, F.J. Molybdenum: More than an essential elemento. J. Exp. Bot. 2022, 73, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- Fonsêca, G.; De Souza Henrique, J.; De Alcântara, E.; Almeida, N.; De Oliveira, A.; Da Silva Medeiros, M.; Silva, A.; De Souza, E. Nutritional and Structural Components of Forage Sorghum Subjected to Nitrogen Fertilization and Molybdenum. Grasses 2025, 4, 1. [Google Scholar] [CrossRef]
- Abreu-Junior, C.; Gruberger, G.; Cardoso, P.; Gonçalves, P.; Nogueira, T.; Capra, G.; Jani, A. Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. Plants 2023, 12, 1164. [Google Scholar] [CrossRef]
- Chakkal, A.; Kumar, P.; Butail, N.; Sharma, M.; Kumar, P.; Suri, D.; Shukla, A. Influence of molybdenum application on soil nutrient status and uptake by cauliflower (Brassica oleracea var. botrytis L.) in an Acid Alfisol soil. Environ. Conserv. J. 2023, 24, 1–11. [Google Scholar] [CrossRef]
- Oliveira, S.L.; Crusciol, C.A.C.; Rodrigues, V.A.; Galeriani, T.M.; Portugal, J.R.; Bossolani, J.W.; Moretti, L.G.; Calonego, J.C.; Cantarella, H. Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Front. Plant Sci. 2022, 13, 887682. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, Y.; Zhu, Y.; Song, K.; Ding, W. Favorable physiological and morphological effects of molybdenum nanoparticles on tobacco (Nicotiana tabacum L.): Root irrigation is superior to foliar spraying. Front. Plant Sci. 2023, 14, 1220109. [Google Scholar] [CrossRef]
- Parankusam, S.; Adimulam, S.; Bhatnagar-Mathur, P.; Sharma, K. Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives. Front. Plant Sci. 2017, 8, 1582. [Google Scholar] [CrossRef]
- Patidar, V.; Dixit, S.; Ghandour, M.; Keshri, A.; Singh, M.; Kundu, S. Carbohydrate and Protein Fractionations of commonly used forages and agro-industrial byproducts as per Cornell Net Carbohydrate and Protein system (CNCPS). J. Livest. Sci. 2022, 13, 182–187. [Google Scholar] [CrossRef]
- Buxton, D.R.; Redfearn, D.D. Plant limitations to fiber digestion and utilization. J. Nutr. 1997, 127, 814S–818S. [Google Scholar] [CrossRef] [PubMed]
- Zicarelli, F.; Sarubbi, F.; Iommelli, P.; Grossi, M.; Lotito, D.; Lombardi, P.; Tudisco, R.; Infascelli, F.; Musco, N. Nutritional Characterization of Hay Produced in Campania Region: Analysis by the near Infrared Spectroscopy (NIRS) Technology. Animals 2022, 12, 3035. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Zhu, Y.; Pinson, S.R.M.; Lin, H.; Guerinot, M.L.; Zhao, F.; Salt, D.E. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytol. 2019, 22, 1983–1997. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, X.; Chen, C.; Chen, J. The Effect of Molybdenum Fertilizer on the Growth of Grass–Legume Mixtures Related to Symbiotic Rhizobium. Agronomy 2023, 13, 495. [Google Scholar] [CrossRef]
Dep. | P | pH | K | Chemical Attributes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | Al | Ca | SAR | Mg | H + Al | CS | CEC | V | ESP | OM | ||||
cm | mg/dm3 | cmolc/dcm3 | % | |||||||||||
0–20 | 383 | 6.71 | 0.48 | 0.11 | 0 | 3.61 | 0.09 | 2.61 | 0.47 | 6.81 | 7.28 | 93.54 | 1.51 | 1.14 |
20–40 | 388 | 6.74 | 0.4 | 0.19 | 0 | 3.9 | 0.14 | 2.67 | 0.5 | 7.16 | 7.66 | 93.47 | 2.48 | 0.94 |
Physical analysis | ||||||||||||||
Dep. | BD | PD | TP | NA | FF | TT | CS | FS | Silt | Clay | ||||
cm | g/cm3 | % | % | |||||||||||
0–20 | 1.61 | 2.53 | 36.26 | 4.32 | 59.00 | 73.60 | 44.50 | 29.10 | 15.90 | 10.50 | ||||
20–40 | 1.66 | 2.47 | 32.80 | 4.39 | 58.31 | 72.20 | 48.88 | 23.34 | 17.20 | 10.50 |
Variable | Production System (S) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Intercropped | Single | S | A | S*A | ||||||
Control | Application (A) | Control | Application (A) | |||||||
Leaves | Soil | Leaves | Soil | |||||||
DM, g/kg FM | 317 | 295 | 278 | 318 | 285 | 323 | 0.77 | 0.46 | 0.31 | 0.44 |
OM, g/kg DM | 937 | 931 | 924 | 935 | 936 | 937 | 1.30 | 0.06 | 0.23 | 0.09 |
CP, g/kg DM | 38.7 b | 75.8 a | 66.8 a | 37.6 b | 59.0 a | 60.6 a | 0.37 | 0.23 | 0.01 | 0.61 |
TC, g/kg DM | 897.1 a | 853.6 b | 856.2 b | 896.8 a | 876.0 b | 875.4 b | 1.16 | 0.15 | 0.01 | 0.07 |
NFC, g/kg DM | 205 | 176 | 173 | 215 | 136 | 173 | 1.08 | 0.68 | 0.08 | 0.59 |
NDF, g/kg DM | 624 | 611 | 607 | 635 | 636 | 612 | 0.69 | 0.37 | 0.55 | 0.88 |
ADF, g/kg DM | 383 | 381 | 384 | 385 | 399 | 372 | 0.57 | 0.81 | 0.77 | 0.63 |
Lignin, g/kg DM | 61 | 62 | 59 | 60 | 58 | 75 | 0.14 | 0.22 | 0.18 | 0.76 |
Fraction | Without Molybdenum | With Molybdenum | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Leaves | Soil | |||||||
Intercropped | Single | Intercropped | Single | Intercropped | Single | |||
Soluble “a”, g/kg | 162.1 b | 146.6 b | 209.1 a | 181.3 a | 195.3 a | 198.6 a | 5.57 | 0.01 |
PD “b”, g/kg | 430 | 398 | 394 | 417 | 505 | 440 | 1.81 | 0.28 |
DR “c”, %/h | 3.0 | 2.0 | 2.0 | 3.0 | 2.0 | 2.0 | 0.31 | 0.34 |
ND, g/kg | 407.8 a | 454.9 a | 396.4 b | 401.3 b | 299.4 b | 361.7 b | 1.79 | 0.04 |
Degradability (g/kg) | Without Molybdenum | With Molybdenum | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Leaves | Soil | |||||||
Intercropped | Single | Intercropped | Single | Intercropped | Single | |||
Potential Effective | 380.1 b | 348.1 b | 411.6 a | 409.1 a | 404.4 a | 406.1 a | 7.59 | 0.01 |
k = 2%/h | 380.1 b | 348.1 b | 411.6 a | 409.1 a | 404.5 a | 406.1 a | 7.59 | 0.01 |
k = 5%/h | 294.7 b | 264.4 b | 327.2 a | 326.7 a | 311.0 a | 316.6 a | 7.75 | 0.02 |
k = 8%/h | 258.6 b | 230.1 b | 292.6 a | 289.6 a | 275.9 a | 281.4 a | 7.35 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.S.G.d.; Oliveira, A.C.d.; Júnior, B.C.; Aviz, R.O.d.; Pereira, K.P.; Vieira, D.S.M.d.M.; Costa, C.d.J.P.; Lima, J.S.d.; Henrique, J.C.G.d.S.; Souza, E.J.O.d. Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea? Grasses 2025, 4, 28. https://doi.org/10.3390/grasses4030028
Silva NSGd, Oliveira ACd, Júnior BC, Aviz ROd, Pereira KP, Vieira DSMdM, Costa CdJP, Lima JSd, Henrique JCGdS, Souza EJOd. Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea? Grasses. 2025; 4(3):28. https://doi.org/10.3390/grasses4030028
Chicago/Turabian StyleSilva, Nágila Sabrina Guedes da, Alexandre Campelo de Oliveira, Baltazar Cirino Júnior, Rhaiana Oliveira de Aviz, Kedes Paulo Pereira, Domingos Sávio Marques de Menezes Vieira, Claudenilde de Jesus Pinheiro Costa, Jucelane Salvino de Lima, Jamiles Carvalho Gonçalves de Souza Henrique, and Evaristo Jorge Oliveira de Souza. 2025. "Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea?" Grasses 4, no. 3: 28. https://doi.org/10.3390/grasses4030028
APA StyleSilva, N. S. G. d., Oliveira, A. C. d., Júnior, B. C., Aviz, R. O. d., Pereira, K. P., Vieira, D. S. M. d. M., Costa, C. d. J. P., Lima, J. S. d., Henrique, J. C. G. d. S., & Souza, E. J. O. d. (2025). Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea? Grasses, 4(3), 28. https://doi.org/10.3390/grasses4030028