PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics
Abstract
:1. Introduction
2. Methods
3. Simulation Protocol for Vibrational Spectra Using Molecular Dynamics
3.1. General Idea of Calculation of the IR Spectra from MD Trajectories
3.2. Cheapening Simulations by Using Large Integration Steps with Frequency Correction
3.3. Simplified Wigner Sampling for Generating Initial Conditions
3.4. Thermostats Incorporating Simplified Wigner Sampling
3.5. Scaling of Vibrational Spectra from Molecular Dynamics
4. Discussion
- First, we need to optimize the structure of the molecule at the given level of theory and compute the harmonic vibrational frequencies. Then, using Equation (14), we can calculate the parameter to define the SWS sampling routine.
- Then, we can set the Berendsen and Andersen thermostats for simultaneous usage in an -MD simulation. The combination of the two acts as a friction and random force in more sophisticated thermostats, such as the Langevin-based models [59] (including the color noise generalized Langevin equation [60]) and the Bussi–Donadio–Parrinello thermostat [61]. This requires setting the two free parameters: relaxation time for the Berendsen thermostat and the resampling time for the Andersen thermostat. SWS compatibility is assured by using the effective temperature (Equation (11)) for the Berendsen thermostat. In the case of the Andersen thermostat, Maxwell-Bolztmann resampling is replaced with the SWS procedure.
- Then, a single or a few MD trajectories are collected with reasonably large time steps. The choice criterion is dictated by the integration method and the corresponding frequency correction (Equation (8), see also Appendix A). In the cases of Verlet, velocity Verlet, and leapfrog integration schemes, the limit is given as , where is the maximal vibrational frequency of the system. If we take the H-F stretching frequency in hydrofluoric acid ( cm−1 [62]), we obtain the maximal allowed time step of fs. Therefore, time steps of around 1 fs are possible for most chemical systems. The total dipole moment of the molecular system is stored at every time step of the MD simulation.
- After collection of the trajectory, the vibrational spectrum is computed as the FT of the dipole moment (Equation (2)) or its velocity’s (Equation (3)) autocorrelation function (Equation (1)). The initial part of the trajectory is usually disregarded as the equilibration phase. The frequency resolution of the FT is given as , where is the total duration of the trajectory (without the equilibration phase). An alternative way to transfer the autocorrelation function from the time domain to the frequency domain with an arbitrary frequency increment is the rLSSA routine (Equation (6)), although this procedure is much more computationally expensive than FFT; thus, it makes sense to use it only for short (∼ steps) trajectories.
- Finally, the frequency correction (Equation (8)) is applied by transforming the frequency axis. Afterward, a tabulated scale factor for the corrected spectrum can be applied to account for the systematic errors in the quantum-chemical approximation.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIMD | ab initio molecular dynamics |
FDT | fluctuation-dissipation theorem |
FFT | fast Fourier transform |
FT | Fourier transform |
FWHM | full width at half maximum |
IR | infrared |
MD | molecular dynamics |
NQE | nuclear quantum effect |
NSK | Nyquist–Shannon–Kotelnikov |
PES | potential energy surface |
rLSSA | regularized least-squares spectral analysis |
rwLSSA | regularized weighted least-squares spectral analysis |
SWS | simplified Wigner sampling |
Appendix A. Derivation of High-Order Frequency Correction
References
- Levitt, M. Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). Angew. Chem. Int. Ed. 2014, 53, 10006–10018. [Google Scholar] [CrossRef] [PubMed]
- Karplus, M. Development of Multiscale Models for Complex Chemical Systems: From H+H2 to Biomolecules (Nobel Lecture). Angew. Chem. Int. Ed. 2014, 53, 9992–10005. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Iftimie, R.; Minary, P.; Tuckerman, M.E. Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. USA 2005, 102, 6654–6659. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Brehm, M.; Fligg, R.; Vöhringer, P.; Kirchner, B. Computing vibrational spectra from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 2013, 15, 6608–6622. [Google Scholar] [CrossRef]
- Wilhelm, J.; VandeVondele, J.; Rybkin, V.V. Dynamics of the Bulk Hydrated Electron from Many-Body Wave-Function Theory. Angew. Chem. Int. Ed. 2019, 58, 3890–3893. [Google Scholar] [CrossRef]
- Levashov, V.A.; Billinge, S.J.L.; Thorpe, M.F. Quantum correction to the pair distribution function. J. Comput. Chem. 2007, 28, 1865–1882. [Google Scholar] [CrossRef]
- Vishnevskiy, Y.V.; Tikhonov, D. Quantum corrections to parameters of interatomic distance distributions in molecular dynamics simulations. Theor. Chem. Accounts 2016, 135, 88. [Google Scholar] [CrossRef]
- Tikhonov, D.S.; Otlyotov, A.A.; Rybkin, V.V. The effect of molecular dynamics sampling on the calculated observable gas-phase structures. Phys. Chem. Chem. Phys. 2016, 18, 18237–18245. [Google Scholar] [CrossRef]
- Tikhonov, D.S.; Sharapa, D.I.; Schwabedissen, J.; Rybkin, V.V. Application of classical simulations for the computation of vibrational properties of free molecules. Phys. Chem. Chem. Phys. 2016, 18, 28325–28338. [Google Scholar] [CrossRef]
- Lan, J.; Kapil, V.; Gasparotto, P.; Ceriotti, M.; Iannuzzi, M.; Rybkin, V.V. Simulating the ghost: Quantum dynamics of the solvated electron. Nat. Commun. 2021, 12, 766. [Google Scholar] [CrossRef] [PubMed]
- Höfener, S.; Trumm, M.; Koke, C.; Heuser, J.; Ekström, U.; Skerencak-Frech, A.; Schimmelpfennig, B.; Panak, P.J. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: Bis-triazin-pyridine (BTP) ligands studied in solution. Phys. Chem. Chem. Phys. 2016, 18, 7728–7736. [Google Scholar] [CrossRef] [PubMed]
- Ditler, E.; Luber, S. Vibrational spectroscopy by means of first-principles molecular dynamics simulations. WIREs Comput. Mol. Sci. 2022, 12, e1605. [Google Scholar] [CrossRef]
- Tikhonov, D.S.; Vishnevskiy, Y.V. Describing nuclear quantum effects in vibrational properties using molecular dynamics with Wigner sampling. Phys. Chem. Chem. Phys. 2023, 25, 18406–18423. [Google Scholar] [CrossRef]
- Scherrer, A.; Vuilleumier, R.; Sebastiani, D. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase. J. Chem. Phys. 2016, 145, 084101. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Statistical Physics: Volume 5; Number Bd. 5; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Schlick, T. Molecular Dynamics: Basics. In Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide; Springer: New York, NY, USA, 2010; pp. 425–461. [Google Scholar] [CrossRef]
- Markland, T.E.; Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2018, 2, 0109. [Google Scholar] [CrossRef]
- Marx, D.; Parrinello, M. Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys. 1996, 104, 4077–4082. [Google Scholar] [CrossRef]
- Althorpe, S.C. Path-integral approximations to quantum dynamics. Eur. Phys. J. B 2021, 94, 155. [Google Scholar] [CrossRef]
- Ceriotti, M.; Bussi, G.; Parrinello, M. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009, 103, 030603. [Google Scholar] [CrossRef]
- Zobel, J.P.; Nogueira, J.J.; González, L. Finite-temperature Wigner phase-space sampling and temperature effects on the excited-state dynamics of 2-nitronaphthalene. Phys. Chem. Chem. Phys. 2019, 21, 13906–13915. [Google Scholar] [CrossRef] [PubMed]
- Zobel, J.P.; Heindl, M.; Nogueira, J.J.; González, L. Vibrational Sampling and Solvent Effects on the Electronic Structure of the Absorption Spectrum of 2-Nitronaphthalene. J. Chem. Theory Comput. 2018, 14, 3205–3217. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Tikhonov, D.S. Metadynamics simulations with Bohmian-style bias potential. J. Comput. Chem. 2023, 44, 1771–1775. [Google Scholar] [CrossRef]
- Tikhonov, D.S.; Datta, A.; Chopra, P.; Steber, A.L.; Manschwetus, B.; Schnell, M. Approaching black-box calculations of pump-probe fragmentation dynamics of polyatomic molecules. Z. FüR Phys. Chem. 2020, 234, 1507–1531. [Google Scholar] [CrossRef]
- Tikhonov, D.S. PyRAMD. 2024. Available online: https://gitlab.desy.de/denis.tikhonov/pyramd (accessed on 26 August 2024).
- Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 1999, 71, 1253–1266. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed.; Cambridge University Press: Cambridge MA, USA, 2007. [Google Scholar]
- Tikhonov, D.S. Regularized weighted sine least-squares spectral analysis for gas electron diffraction data. J. Chem. Phys. 2023, 159, 174101. [Google Scholar] [CrossRef]
- Tikhonov, D.S. Simple posterior frequency correction for vibrational spectra from molecular dynamics. J. Chem. Phys. 2016, 144, 174108. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Ivanov, S.D.; Witt, A.; Marx, D. Theoretical spectroscopy using molecular dynamics: Theory and application to CH5+ and its isotopologues. Phys. Chem. Chem. Phys. 2013, 15, 10270–10299. [Google Scholar] [CrossRef]
- Cooley, J.; Tukey, J. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Shannon, C. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Nyquist, H. Certain Topics in Telegraph Transmission Theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Kotel’nikov, V.A. On the transmission capacity of ’ether’ and wire in electric communications. Phys. Usp. 2006, 49, 736–744. [Google Scholar] [CrossRef]
- Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem. Phys. 2020, 152, 164105. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, D.S.; Garg, D.; Schnell, M. Inverse Problems in Pump–Probe Spectroscopy. Photochem 2024, 4, 57–110. [Google Scholar] [CrossRef]
- Praprotnik, M.; Janežič, D. Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water. J. Chem. Phys. 2005, 122, 174103. [Google Scholar] [CrossRef]
- Horníček, J.; Kaprálová, P.; Bouř, P. Simulations of vibrational spectra from classical trajectories: Calibration with ab initio force fields. J. Chem. Phys. 2007, 127, 084502. [Google Scholar] [CrossRef]
- Thomas, M. Methodological Developments. In Theoretical Modeling of Vibrational Spectra in the Liquid Phase; Springer International Publishing: Cham, Switzerland, 2017; pp. 33–83. [Google Scholar] [CrossRef]
- Atkins, P.; Paula, J. Atkins’ physical chemistry; Oxford University press: Oxford, UK, 2008. [Google Scholar]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Kesharwani, M.K.; Brauer, B.; Martin, J.M.L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, D.S.; Gordiy, I.; Iakovlev, D.A.; Gorislav, A.A.; Kalinin, M.A.; Nikolenko, S.A.; Malaskeevich, K.M.; Yureva, K.; Matsokin, N.A.; Schnell, M. Harmonic scale factors of fundamental transitions for dispersion-corrected quantum chemical methods. ChemPhysChem 2024, e202400547. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, H.M.; Draxl, K.; Steiner, B.W.; Herron, J.T. “Ion Energetics Data” in NIST Chemistry WebBook; NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Schlick, T. Molecular Dynamics: Further Topics. In Molecular Modeling and Simulation: An Interdisciplinary Guide: An Interdisciplinary Guide; Springer: New York, NY, USA, 2010; pp. 463–517. [Google Scholar] [CrossRef]
- Ceriotti, M.; Bussi, G.; Parrinello, M. Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations. Phys. Rev. Lett. 2009, 102, 020601. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed]
- NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 22, May 2022, Editor: Russell D. Johnson III. Available online: http://cccbdb.nist.gov/ (accessed on 26 August 2024).
- Asvany, O.; Kumar, P.; Redlich, B.; Hegemann, I.; Schlemmer, S.; Marx, D. Understanding the Infrared Spectrum of Bare CH5+. Science 2005, 309, 1219–1222. [Google Scholar] [CrossRef]
- Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M.W.; Gordon, M.S. Ab initio vibrational state calculations with a quartic force field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6. J. Chem. Phys. 2004, 121, 1383–1389. [Google Scholar] [CrossRef]
- Barnes, L.; Schindler, B.; Compagnon, I.; Allouche, A.R. Fast and accurate hybrid QM//MM approach for computing anharmonic corrections to vibrational frequencies. J. Mol. Model. 2016, 22, 285. [Google Scholar] [CrossRef]
Method | Scale Factor |
---|---|
BLYP-D3(BJ)/6-31G | |
PBE-D3(BJ)/6-31G | |
PBEh-3c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhonov, D.S. PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics. Spectrosc. J. 2024, 2, 171-187. https://doi.org/10.3390/spectroscj2030012
Tikhonov DS. PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics. Spectroscopy Journal. 2024; 2(3):171-187. https://doi.org/10.3390/spectroscj2030012
Chicago/Turabian StyleTikhonov, Denis S. 2024. "PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics" Spectroscopy Journal 2, no. 3: 171-187. https://doi.org/10.3390/spectroscj2030012
APA StyleTikhonov, D. S. (2024). PyRAMD Scheme: A Protocol for Computing the Infrared Spectra of Polyatomic Molecules Using ab Initio Molecular Dynamics. Spectroscopy Journal, 2(3), 171-187. https://doi.org/10.3390/spectroscj2030012