Next Article in Journal
The Hydrodynamics of Ammonoid Swimming: Equations of Motion and Rocking Resonances
Previous Article in Journal
Stelladens mysteriosus: A Strange New Mosasaurid (Squamata) from the Maastrichtian (Late Cretaceous) of Morocco
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

First Fossil of Tylidae (Isopoda: Oniscidea) in Kachin Amber, Myanmar, with a List of All Oniscidea Fossil Records

1
School of Agriculture, Ningxia University, Yinchuan 750021, China
2
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Box 92, Beichen West Road, Chaoyang District, Beijing 100101, China
3
Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy
4
Museo di Storia Naturale, Sezione di Zoologia “La Specola”, Via Romana 17, 50125 Florence, Italy
5
Beijing Xiachong Amber Museum, Beijing 100083, China
*
Authors to whom correspondence should be addressed.
Foss. Stud. 2023, 1(1), 15-33; https://doi.org/10.3390/fossils1010003
Submission received: 23 March 2023 / Revised: 28 April 2023 / Accepted: 15 May 2023 / Published: 17 May 2023

Abstract

:
A fossil of Oniscidea, Tylidae gen. et sp. indet. from Kachin amber (Cretaceous Cenomanian), Myanmar, is described here. The convex body, the cephalon with a triangular protrusion between the antennae, and pereonites 2–6 with epimera demarcated from tergites indicate that this specimen belongs to the family Tylidae, but since it is not an adult the identification of the genus and species is uncertain. This specimen has a convex body and shows an ability to conglobate, like all Tylidae. It is the first specimen of Oniscidea with a conglobation ability found in Burmese amber. Up to now, the fossil record of terrestrial isopods has included a total of 20 families and 54 records (36 species and 18 not formally identified species), 20% of which are from the Cretaceous period. These fossil records from the Cretaceous period show that terrestrial isopods were highly diversified as early as in the Cenomanian.

1. Introduction

Terrestrial isopods (Oniscidea), also known as woodlice or pill bugs, are the only isopods fully adapted to live on land, occurring in all terrestrial environments from coasts to high mountains, and from forests to deserts [1,2,3,4,5]. The species of Oniscidea evolved to live on land directly from the ocean instead of using freshwater [6]. Like other Peracarida, terrestrial isopods show direct development, involving a marsupial and a postmarsupial phase. After exiting the marsupium the individuals become the first postmarsupial mancas, similar to adults except for the reduced pereonite 7 and seventh pereopods, and the absence of secondary sexual characters [7].
As for many other invertebrate groups, the phylogeny of terrestrial isopods is not yet completely resolved and existing research based on morphological and molecular analyses tends to consider most of the species of Oniscidea as monophyletic, maybe with the exclusion of the genus Ligia Fabricius, 1798 [8,9,10,11,12,13,14,15,16]. Oniscidea consist of five principal lineages, Diplocheta, Tylida, Microcheta, Synocheta, and Crinocheta [6,17], including almost 4000 species in more than 500 genera and 38 families [2,3,18,19,20,21,22]. Diplocheta and Tylida represent the most basal clades, mainly including semi-terrestrial species [9]. Most species of Diplocheta and Tylida occur in near-shore habitats and are considered the transitional stage of Isopoda conquering the land [5]. Tylida (Tylidae) comprise only two genera: Helleria Ebner, 1868 and Tylos Audouin, 1826 [16]. Helleria comprises only H. brevicornis Ebner, 1868, distributed in the woods of the North Tyrrhenian sea [17,22], whereas Tylos has a worldwide distribution, occurring on coastal supralittorals [23,24,25,26]. Tylidae have a conglobation ability to protect themselves from predators and to reduce water loss [27,28]. Tylos juveniles can allow the swash to transport them up the beach by rolling themselves into a ball; although adults have not been observed to show this behaviour, if caught by a wave they flatten themselves against the beach and allow the water to pass over them before moving upshore [24].
Regarding fossils, the earliest Oniscidea fossil record comes from the Cretaceous Albian (105 Ma), but some indications suggest that they could have already appeared on land in the Late Palaeozoic [14,29,30]. Fossil records of Oniscidea are quite scarce and mostly limited to preservation in amber [30]; until recently, they were almost entirely restricted to the Cenozoic. To our knowledge, in the Mesozoic, amber with Oniscidea inclusions is only known from three localities: France, Spain and Myanmar [30]. The formation of Kachin amber is relatively old (Cretaceous, 99 Ma) [31], in the period of intense orogeny in the Mesozoic [32]. Dinosaurs were still in their heyday, and fish and birds were also highly developed [33,34,35]. At that time, mammals and angiosperms had just appeared [36]. The biodiversity in amber from Myanmar is very high, with a lot of published documents about insects and other terrestrial arthropods [37]. To date, there are only two species in two genera of Oniscidea preserved in Burmese amber [38,39]. The evolutionary history of the Oniscidea is of great significance to better understand the processes of land adaptations in crustaceans. Thus, Oniscidea may also contribute to the reconstruction of the ancient environment near the Early Cenomanian amber-producing forest in northern Myanmar.
In this paper, we describe the first fossil of Tylidae from Kachin amber, Myanmar, and provide an updated catalogue of all fossil species and records of the suborder Oniscidea. This work tries to give an insight into the earliest diversity and history of Oniscidea.

2. Materials and Methods

The amber specimen for our study was collected from Kachin (Hukawng Valley) in northern Myanmar before 2016, at the north end of Noije Bum, which is approximately at 26°15′ N, 96°34′ E and 18 km southwest of the town of Tanai [31]. The age of Kachin amber is attributed to the Early Cenomanian (98.19 ± 0.62 Ma) [31]. The specimen (NO. BXAM BA-ONI-001) is currently housed in the Institute of Zoology, Chinese Academy of Sciences (for ten years), and will eventually be deposited in the Beijing Xiachong Amber Museum, Beijing, China.
Morphological terminology used in species descriptions is mainly based on Schmidt [40], López-Orozco [21], and Taiti [2]. For setae, scales, and similar structures, we follow the definitions given in Schmidt [40].
The specimen was examined and photographed under a Nikon SMZ25 microscope, coupled to a Nikon DS-Ri2 digital camera system. The line drawings were edited by Adobe Illustrator CC and Adobe Photoshop CC.
With the present paper, we also give a survey of all species of fossil Oniscidea described until today, including all valid names and taxa with uncertain or questionable taxonomic status. The families, genera and species are arranged strictly alphabetically, regardless of their systematic position. The catalogue is mainly based on Schmalfuss, (2003) [17], Schmidt, (2008) [6], and Broly, (2013) [30]. Museums and their Acronyms, with Primary Types
BMNH: British Museum (Natural History), London, United Kingdom.
BSIP: Bribal Sahni Institute of Palaeobotany, Lucknow, India.
IHNFG: Instituto de Historia Natural de Chiapas, Tuxtla Gutiérrez, Mexico.
MCNA: Museo de Ciencias Naturales de Álava, La Plata, Argentina.
NMS: National Museums Scotland, Edinburgh, United Kingdom.
OSU: Oregon State University, Corvallis, American.
SMNS: Staatliche Museum für Naturkunde Stuttgart, Stuttgart, Germany.

3. Results

3.1. The First Fossil Record of the Family Tylidae from Myanmar

 
Systematics
Order: Isopoda Latreille, 1817
Suborder: Oniscidea Latreille, 1802
Family: Tylidae Dana, 1852
Genus and species indet.
Materials: One manca specimen (NO. BXAM BA-ONI-001) from Kachin amber from the Hukawng Valley (Myanmar).
Description: Maximum dimensions: 2.9 mm length × 1.7 mm width. Able to roll up into a ball; dorsal surface not distinctly granulated (Figure 1).
Cephalon (Figure 2A,B): triangular frontal process well developed; flat, semi-circular frontal shield above triangular frontal process; eyes consisting of several ommatidia.
Antennula (Figure 2A): short, composed of one or two elements.
Antenna (Figure 1C and Figure 2A–D): five peduncular articles plus flagellum of four articles. Fourth peduncular article longest; fifth peduncular article thickset. Flagellum with three subequal articles and minute terminal article.
Pereon (Figure 1B,C and Figure 2E,F): seven segments. Pereonites 2 to 6 with epimera demarcated by sutures, and pereonite 7 without epimera (manca stage). Pereonite 1 with concave distal margins at sides, posterolateral corners triangular directed backwards; epimera of pereonite 2 trapezoidal, of pereonites 3 and 4 triangular apically rounded, of pereonites 5 and 6 sub-rectangular.
Pereopods (Figure 2G,H): poorly discernible due to conglobating position of the animal. Dactylus and propodus with no setae; carpus longest, twice as long as propodus, covered with many setae, with three swellings on sternal margin, each with two setae; merus and ischium with few setae.
Pleon (Figure 2E,F): consisting of five segments. Pleonites 1 and 2 short and inconspicuous; pleonites 3 and 4 with well-developed epimera directed backwards; pleonite 5 without epimera.
Telson (Figure 2F): sub-rectangular with widely rounded distal margin, about one-and-a-half times as wide as long; in dorsal view, fully covering uropods.
Remarks: The specimen certainly belongs to the family Tylidae, based on the following characteristics: (1) a well-developed frontal process; (2) pereonites with epimera not fused to tergites except pereonite 1; and (3) uropods in a completely ventral position, not visible in dorsal view [24,41]. Even if this specimen is a manca with pereonite 7 not fully developed, it shows a clear difference from both Tylos and Helleria, i.e., the presence of a flat frontal shield above the frontal process. It differs from Helleria also in the pleon tergites not being fused and in the triangular shape of the frontal process. For the latter characteristic, this specimen seems similar to the genus Tylos. Due to the manca stage of this specimen, we refrained from establishing a new genus and species for it. More specimens with adult forms are needed to further determine its taxonomic status at genus and species level.
Figure 1. General habitus of specimen. (A) Photograph in left lateral view; (B) Photograph in right lateral view. (C) Line drawing as in B. Per = Pereonite; Ep = Epimeron; Pl = Pleonite; Tel = Telson. Scale bars = 500 µm.
Figure 1. General habitus of specimen. (A) Photograph in left lateral view; (B) Photograph in right lateral view. (C) Line drawing as in B. Per = Pereonite; Ep = Epimeron; Pl = Pleonite; Tel = Telson. Scale bars = 500 µm.
Fossstud 01 00003 g001
Figure 2. Detailed photographs and interpretative line drawings of Tylidae fossil. (A) Photograph of cephalon. (B) Line drawing as in A. (C) Photograph of antenna. (D) Line drawing as in C. (E) Photograph of pereonites 6-7, pleon and telson. (F) Line drawing as in E. (G) Photograph of pereopods. (H) Line drawing as in G. A = Antennula; Cl = Clypeus; F1–F4 = Segments of flagellum 1–4; FP = Frontal process; FS = Frontal shield; P1–5 = Segments of peduncle 1–5; Per = Pereonite; Pl = Pleonite; Tel = Telson. Scale bars = 200 µm.
Figure 2. Detailed photographs and interpretative line drawings of Tylidae fossil. (A) Photograph of cephalon. (B) Line drawing as in A. (C) Photograph of antenna. (D) Line drawing as in C. (E) Photograph of pereonites 6-7, pleon and telson. (F) Line drawing as in E. (G) Photograph of pereopods. (H) Line drawing as in G. A = Antennula; Cl = Clypeus; F1–F4 = Segments of flagellum 1–4; FP = Frontal process; FS = Frontal shield; P1–5 = Segments of peduncle 1–5; Per = Pereonite; Pl = Pleonite; Tel = Telson. Scale bars = 200 µm.
Fossstud 01 00003 g002

3.2. Catalogue of Oniscidea Fossil Records

The fossil record of Oniscidea comprises 36 species and 17 records with undefined taxon names, including the one new record described herein. Eleven fossil records from Spain, France and Myanmar come from the Mesozoic Era; thirty-nine from the Baltic, Dominican Republic, Ukraine, Kenya, India and Mexico are from the Cenozoic Era, and four have unknown ages (Table 1).

3.2.1. List of Fossil Records of Oniscidea with Definite Taxonomic Status

 
Family: Agnaridae
Genus: Protracheoniscus Verhoeff, 1917
Protracheoniscus Verhoeff, 1917: 167 [42]. Type species: Porcellio amoenus C.L. Koch, 1841 (=Protracheoniscus politus (C.L. Koch, 1841)) by subsequent designation by Gruner, 1966 [43].
 
1. Protracheoniscus politus (C.L. Koch, 1841)
Porcellio politus C.L. Koch, 1841: 12 [44]. Fossil (rock): Strouhal, 1954 (as Protracheoniscus cf. amoenus): 53 [45]. Locality: Hundsheim, Austria; Bitterfeld, Germany. Schumann and Wendt, 1989: 37 (list) [46]; Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 220 (catalogue) [17]; Dunlop, 2010: 65 (Figure 5) [48]; Broly et al., 2013: 464 (list) [30].
Age: Chattian, Oligocene, Cenozoic.
 
Family: Armadillidae
Genus: † Palaeoarmadillo Poinar, 2018
Palaeoarmadillo Poinar, 2018: 2 [39] (monotypic). Type species: Palaeoarmadillo microsoma Poinar, 2018 by original designation.
2. † Palaeoarmadillo microsoma Poinar, 2018
Palaeoarmadillo microsoma Poinar, 2018: 2 [39] (amber). Locality: Hukawng Valley, Kachin State, Myanmar. Holotype ♀ B-Cr-2 (OSU).
Age: Cretaceous Cenomanian, Mesozoic.
 
Family: Armadillidiidae
Genus: Armadillidium Brandt, 1831
Armadillidium Brandt, 1831: 81 [49]. Type species: Armadillidium commutatum Brandt, 1831 (=Armadillidium vulgare Latreille, 1804) by subsequent designation by Fowler, 1912 [50].
 
3. Armadillidium carniolense Verhoeff, 1901
Armadillidium carniolense Verhoeff, 1901: 67 [51]. Fossil (rock): Strouhal, 1954: 56 [45]. Locality: Hundsheim, Austria.
Age: Pleistocene, Cenozoic.
 
4. † Armadillidium payangadensis Srivastava, Shukla, Kumar, Kumar & Prakash, 2006
Armadillidium payangadensis Srivastava et al., 2006: 715 [52] (amber). Locality: Payangadi China Clay mine, Cannanore district, Kerala, India. Holotype sex unknown No. 38375 (BSIP). Schmidt, 2008: 220 (comments) [6]; Broly et al., 2013: 464 (list) [30].
Age: Miocene, Cenozoic.
Note: Status uncertain (Schmidt, 2008) [6].
 
5. Armadillidium pulchellum (Zenker, 1798)
Oniscus pulchellum Zenker, 1798: 21 [53]. Fossil (amber): Schumann and Wendt, 1989: 37 (list) [46]. Locality: Germany. Spahr, 1993: 46 (catalogue) [47]; Schmalfuss, 2003: 34 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Chattian, Oligocene, Cenozoic.
 
6. † Armadillidium molassicum (Heer, 1865)
Armadillo molassicus Heer, 1865: 622 [54] (rock). Locality: Germany. Schmidt, 2008: 220 (comments) [6]. Schmalfuss, 2003: 43 (nomen dubium) [17]; Broly et al., 2013: 464 (list) [30].
Age: Miocene, Cenozoic.
Note: “not sufficient to recognize whether it is an isopod or a millipede” (Schmidt, 2008) [6].
 
7. Armadillidium vulgare (Latreille, 1804)
Armadillo vulgaris Latreille, 1804: 48 [55]. Subfossil (rock): Dalens and Bouthier, 1985: 85 [56]. Locality: Cosne-sur-Loire, France. Schmalfuss, 2003: 38 (catalogue) [17].
Age: Second century, Cenozoic.
 
Family: Delatorreiidae
Genus: Pseudarmadillo Saussure, 1857
Pseudarmadillo de Saussure, 1857: 308 [57]. Type species: Pseudarmadillo carinulatus de Saussure, 1857 by monotypy.
 
8. † Pseudarmadillo cristatus Schmalfuss, 1984
Pseudarmadillo cristatus Schmalfuss, 1984: 4 [58] (amber). Locality: Dominican Republic. Holotype ♂ No. Do-2403-K-1 (SMNS). Paratypes: 1 ♀ No. Do-3881-M-1 (SMNS); six specimens in one piece of amber, No. Do-4612-B (SMNS); 1♂ No. Do-579-K (SMNS); two juveniles (1 mm along) No. Do-457-K (SMNS). Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 222 (catalogue) [17].
Age: Oligocene-Miocene, Cenozoic.
 
9. † Pseudarmadillo tuberculatus Schmalfuss, 1984
Pseudarmadillo tuberculatus Schmalfuss, 1984: 10 [58] (amber). Locality: Dominican Republic. Holotype ♂ No. Do-4157-M-1 (SMNS). Paratypes 1 ♀ No. Do-4156-M-1 (SMNS); two specimens in one piece of amber, No. Do-3349-M (SMNS). Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 222 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Oligocene-Miocene, Cenozoic.
 
Family: Detonidae
Genus: Armadilloniscus Uljanin, 1875
Armadilloniscus Uljanin, 1875: 5 [59]. Type species: Actoniscus ellipticus Harger, 1878 (=Armadilloniscus ellipticus (Harger, 1878)) by subsequent designation by Mulaik, 1960 [60].
 
10. † Armadilloniscus miocaenicus Broly, 2018
Armadilloniscus miocaenicus Broly, 2018 in Broly et al., 2018: 205 [61] (amber). Locality: Chiapas, Mexico. Holotype ♀ IHNFG-4990 (IHNFG).
Age: Lower Miocene, Cenozoic.
 
Family: Eubelidae
Genus: Eubelum Budde-Lund, 1885
Eubelum Budde-Lund, 1885: 291 [62]. Type species: Eubelum lubricum Budde-Lund, 1885 by monotypy.
 
11. † Eubelum rusingaense Morris, 1979
Eubelum rusingaense Morris, 1979: 72 [63] (rock). Locality: between Hiwegi Hill and the east coast of Rusinga Island, Lake Victoria, Kenya. Holotype sex unknown BM(NH) In. 61025 (BMNH). Broly et al., 2013: 464 (list) [30].
Age: Lower Miocene, Cenozoic.
 
Family: Ligiidae
Genus:  Eoligiiscus Sánchez-García, Peñalver, Delclos & Engel, 2021
Eoligiiscus Sánchez-García et al., 2021: 5 [29] (monotypic). Type species: Eoligiiscus tarraconensis Sánchez-García, Peñalver, Delclos and Engel, 2021 by original designation.
 
12. † Eoligiiscus tarraconensis Sánchez-García, Peñalver, Delclos et Engel, 2021
Eoligiiscus tarraconensis Sánchez-Garcíaet al., 2021: 5 [29] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Holotype sex unknown MCNA 9751 (MCNA).
Age: Albian, Cretaceous, Mesozoic.
 
Genus: Ligidium Brandt, 1833
Ligidium Brandt, 1833: 173 [64]. Type species: Ligidium persoonii Brandt, 1833 (=Ligidium hypnorum) by monotypy.
 
13. † Ligidium splendidum Strouhal, 1940
Ligidium splendidum Strouhal, 1940 ? (amber). Keilbach, 1982: 198 (catalogue) [65]. Locality: Baltic, northern Europe. Spahr, 1993: 46 (catalogue) [47]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
 
Family: Olibrinidae
Genus:  Palaeolibrinus Broly, 2018
Palaeolibrinus Broly, 2018: 204 [61] (monotypic). Type species: Palaeolibrinus spinicornis Broly, 2018 by original designation.
 
14. † Palaeolibrinus spinicornis Broly, 2018
Palaeolibrinus spinicornis Broly, 2018 in: Broly et al., 2018: 204 [61] (amber). Locality: Campo La Granja mine, near Simojovel, Chiapas, Mexico. Holotype ♂ IHNFG-4984 (IHNFG).
Age: Early Miocene, Cenozoic.
 
Family: Oniscidae
Genus: Oniscus Linnaeus, 1758
Oniscus Linnaeus, 1758: 824 [66]. Type species: Oniscus asellus Linnaeus, 1758 by subsequent designation by Audouin, 1823 [67].
 
15. † Oniscus convexus Koch & Behrendt, 1854
Oniscus convexus Koch & Behrendt, 1854: 2 [68] (amber). Locality: Baltic, northern Europe. Keilbach, 1982: 199 (catalogue) [65]; Spahr, 1993: 46 (catalogue) [47]; Schmalfuss, 2003: 162 (nomen dubium) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
 
16. Oniscus asellus Linnaeus, 1758
Oniscus asellus Linneaus, 1758: 637 [66]. Subfossil (rock): Dalens and Bouthier, 1985: 86 [56]. Locality: Cosne-sur-Loire, France.
Age: Second century, Cenozoic.
 
Family: Philosciidae
Genus:  Aquitanoscia Broly, Serrano-Sáchez, Rodríguez-García & Vega, 2017
Aquitanoscia Broly et al., 2017: 2 [69]. Type species: Aquitanoscia chiapasensis Broly, Serrano-Sáchez, Rodríguez-García & Vega, 2017 by original designation.
 
17. † Aquitanoscia chiapasensis Broly, Serrano-Sáchez, Rodríguez-García & Vega, 2017
Aquitanoscia chiapasensis Broly et al., 2017: 3 [69] (amber). Locality: Los Pocitos mine, near Simojovel, Chiapas, Mexico. Holotype ♀ IHNFG-5016 (IHNFG).
Age: Early Miocene, Cenozoic.
 
18. † Aquitanoscia materna Broly, Serrano-Sáchez, Rodríguez-García & Vega, 2017
Aquitanoscia maternus Broly et al., 2017: 6 [69] (amber). Locality: Los Pocitos mine, near Simojovel, Chiapas, Mexico. Holotype ♀ IHNFG-5017 (IHNFG).
Note: The name maternus (masculine adjective) given by Broly et al. (2017) to this species has to be changed to materna (feminine adjective) since the genus name Aquitanoscia is feminine [69].
Age: Early Miocene, Cenozoic.
 
Family: Porcellionidae
Genus: Porcellio Latreille, 1804
Porcellio Latreille, 1804: 45 [55]. Type species: Porcellio scaber Latreille, 1804 by subsequent designation by Gruner, 1966 [43].
 
19. Porcellio gallicus Dollfus, 1904
Porcellio gallicus Dollfus, 1904: 45 [70]. Subfossil (rock): Dalens and Bouthier, 1985: 86 [56]. Locality: Cosne-sur-Loire, France.
Age: Second century, Cenozoic.
 
20. Porcellio scaber Latreille, 1804
Porcellio scaber Latreille, 1804: 45 [55]. Fossil (rock): Strouhal, 1954: 52 [45]. Locality: Hundsheim, Austria. Subfossil: Dalens and Bouthier, 1985: 86 [56]. Locality: Cosne-sur-Loire, France. Schmalfuss, 2003: 205 (catalogue) [17].
Age: Pleistocene, Cenozoic.
 
21. † Porcellio cyclocephalus Menge, 1854
Porcellio cyclocephalus Menge, 1854 in Koch and Behrendt, 1854: 10 [68] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Keilbach, 1982: 199 (catalogue) [65]; Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 194 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
Note: “Unrecognizably described from Baltic amber” (Schmalfuss, 2003) [17].
 
22. † Porcellio granulatus Menge, 1854
Porcellio cyclocephalus Menge, 1854 in: Koch and Behrendt, 1854: 10 [68] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Keilbach, 1982: 199 (catalogue); Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 197 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
Note: “Unrecognizably described from Baltic amber” (Schmalfuss, 2003) [17].
 
23. † Porcellio notatus C.L. Koch, 1854
Porcellio notatus Koch, 1854 in Koch and Behrendt, 1854: 10 [68] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Keilbach, 1982: 199 (catalogue); Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 202 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
Note: “Unrecognizably described from Baltic amber” (Schmalfuss, 2003) [17].
 
Genus: Porcellionides Miers, 1877
Porcellionides Miers, 1877: 668 [71]. Type species: Porcellio (Porcellionides) jelskii Miers, 1877 (=Porcellionides pruinosus (Brandt, 1833)) by subsequent designation by Schmalfuss and Ferrara, 1978 [41].
 
24. Porcellionides pruinosus (Brandt, 1833)
Porcellio pruinosus Brandt, 1833: 181 [64]. Fossil (rock): Baas, 1982: 119 [72]. Locality: Nidderau Germany. Schmalfuss, 2003: 212 (catalogue) [17].
Age: unknown.
 
Family: Scleropactidae
Genus:  Palaeospherarmadillo Broly, 2018
Palaeospherarmadillo Broly, 2018: 207 [61]. Type species: Palaeospherarmadillo mazanticus Broly, 2018 by original designation.
 
25. † Palaeospherarmadillo mazanticus Broly, 2018
Palaeospherarmadillo mazanticus Broly, 2018 in Broly et al., 2018: 207 [61] (amber). Locality: Campo La Granja mine, near Simojovel, Chiapas, Mexico. Holotype ♂ IHNFG-4997 (IHNFG). Paratype ♂ IHNFG-4998 (IHNFG).
Age: Early Miocene, Cenozoic.
 
26. † Palaeospherarmadillo rotundus Broly, 2018
Palaeospherarmadillo rotundus Broly, 2018 in Broly et al., 2018: 208 [61] (amber). Locality: Campo La Granja mine, near Simojovel, Chiapas, Mexico. Holotype sex unknown IHNFG-5302 (IHNFG).
Age: Early Miocene, Cenozoic.
 
Genus:  Protosphaeroniscus Schmalfuss, 1980
Protosphaeroniscus Schmalfuss, 1980: 4 [69] (monotypic). Type species: Protosphaeroniscus tertiarius Schmalfuss, 1980 by original designation.
 
27. † Protosphaeroniscus tertiarius Schmalfuss, 1980
Protosphaeroniscus tertiarius Schmalfuss, 1980: 4 [73] (amber). Locality: Dominican Republic. Holotype ♂ Do 1494-K-1 (SMNS). Paratype: ♂ Do 1503-K-1 (SMNS). Keilbach, 1982: 199 (catalogue); Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 217 (catalogue) [17]; Schmidt, 2007: 74 [74]; Broly et al., 2013: 464 (list) [30].
Age: Oligocene Miocene, Cenozoic.
 
Family: Stenoniscidae
Genus: Archeostenoniscus Broly, 2018
Archeostenoniscus Broly, 2018: 209 [61]. Type species: Archeostenoniscus robustus Broly, 2018 by original designation.
 
28. † Archeostenoniscus robustus, Broly, 2018
Archeostenoniscus robustus Broly, 2018 in Broly et al., 2018: 209 [61] (amber). Locality: Campo La Granja mine, near Simojovel, Chiapas, Mexico. Holotype ♀ IHNFG-4988/A (IHNFG).
Age: Early Miocene, Cenozoic.
 
29. † Archeostenoniscus mexicanus Broly, 2018
Archeostenoniscus mexicanus Broly, 2018 in Broly et al., 2018: 210 [61] (amber). Locality: Campo La Granja mine, near Simojovel, Chiapas, Mexico. Holotype sex unknown IHNFG-4996 (IHNFG).
Age: Early Miocene, Cenozoic.
 
Family: Trachelipodidae
Genus: Trachelipus Budde-Lund, 1908
Trachelipus Budde-Lund, 1908: 281 [75]. Type species: Porcellio rathkii Brandt, 1833 (=Trachelipus rathkii (Brandt, 1833)) by original designation and monotypy.
 
30. Trachelipus rathkii (Brandt, 1833)
Porcellio rathkii Brandt, 1833: 177 [68]. Fossil (rock): Baas, 1982: 119 [72]. Locality: Turkey. Schmalfuss, 2003: 261 (catalogue) [17].
Age: unknown.
 
Family: Trichoniscidae
Genus:  Autrigoniscus Sánchez-García, Peñalver, Delclos & Engel, 2021
Autrigoniscus Sánchez-García, Peñalver, Delclos & Engel, 2021: 13 [29] (monotypic). Type species: Autrigoniscus resinicola Sánchez-García, Peñalver, Delclos & Engel, 2021, by original designation.
 
31. † Autrigoniscus resinicola Sánchez-García, Peñalver, Delclos &Engel, 2021
Autrigoniscus resinicola Sánchez-García et al., 2021: 13 [29] (amber). Locality: Peñacerrada I amber site [Peñacerrada I = Moraza], eastern margin of the Basque-Cantabrian Basin, Burgos, northern Spain. Holotype ♂ MCNA 12522 (MCNA).
Age: Albian, Cretaceous, Mesozoic.
 
Genus: Trichoniscus Brandt, 1833
Trichoniscus Brandt, 1833: 174 [64]. Type species: Trichoniscus pusillus Brandt, 1833 by monotypy.
 
32. † Trichoniscus asper Menge, 1854
Trichoniscus asper Menge, 1854 in Koch and Behrendt, 1854: 10 [68] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Keilbach, 1982: 199 (catalogue); Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 266 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
 
Genus: Hyloniscus Verhoeff, 1908
Hyloniscus Verhoeff, 1908: 176 [76]. Type species: Itea riparia C.L. Koch, 1838 (=Hyloniscus riparius (C.L. Koch, 1938)) by original designation.
 
33. Hyloniscus riparius (C.L. Koch, 1838).
Itea riparia C.L. Koch, 1838: 17 [77]. Fossil (amber): Schumann and Wendt, 1989: 37 [46]. Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Spahr, 1993: 47 (catalogue) [47]; Schmalfuss, 2003: 113 (catalogue) [17]; Broly et al., 2013: 464 (list) [30].
Age: Eocene, Paleogene, Cenozoic.
 
Family: Tylidae
Genus: Tylos Audouin, 1826
Tylos Audouin, 1826: 96 [67]. Type species: Tylos latreillii Audouin, 1826, by monotypy.
 
34. Tylos granulatus Krauss, 1843
Tylos granulatus Krauss, 1843: 64 [78]. Fossil (rock): Haughton, 1931: 27 [79]. Locality: west coast of South Africa.
Age: late Tertiary, Cenozoic.
 
Family: Detonidae?
Genus:  Heraclitus Sánchez-García, Peñalver, Delclos & Engel, 2021
Heraclitus Sánchez-García, Peñalver, Delclos & Engel, 2021: 19 [29] (monotypic). Type species: Heraclitus helenae, Sánchez-García, Peñalver, Delclos & Engel, 2021 by original designation.
 
35. † Heraclitus helenae Sánchez-García, Peñalver, Delclos & Engel, 2021
Heraclitus helenae Sánchez-García, Peñalver, Delclos & Engel, 2021: 21 [29] (amber). Locality: Basque-Cantabrian Basin, Burgos, northern Spain. Holotype sex unknown MCNA 12546 (MCNA).
Age: Albian, Cretaceous, Mesozoic.
 
Family: Styloniscidae?
Genus:  Myanmariscus Broly, Maillet & Ross, 2015
Myanmariscus Broly, Maillet & Ross, 2015: 221 [38] (monotypic). Type species: Myanmariscus deboiseae Broly, Maillet & Ross, 2015 by original designation.
 
36. † Myanmariscus deboiseae Broly, Maillet & Ross, 2015
Myanmariscus deboiseae Broly et al., 2015: 221 [38] (amber). Locality: Hukawng Valley, Kachin State, Myanmar. Holotype ♀ NMS G.2010.20.42 (NMS).
Age: Cenomanian, Cretaceous, Mesozoic.

3.2.2. List of Fossil Records of Oniscidea with Unidentified Taxonomic Status

 
Family: Uncertain
Genus: Uncertain
Four specimens, species uncertain.
Reference: Alonso et al., 2000 [80] (amber); Delclos et al., 2007 [81] (amber); Perrichot, 2004 [82] (amber); Ross et al., 2010 [83] (amber).
Age: Albian, Cretaceous, Mesozoic.
Fossil locality: Spain; Spain; France; Myanmar.
 
Family: Uncertain
Genus:  Eoarmadillidium Dollfus, 1904
Eoarmadillidium Dollfus, 1904: 146 (monotypic). Type species: Eoarmadillidium granulatum Dollfus, 1904 by original designation.
 
Eoarmadillidium granulatum Dollfus, 1904
Eoarmadillidium granulatum Dollfus, 1904: 146 [70] (amber). Locality: Cette, France. Schmalfuss, 2003: 94 (catalogue) [17].
Age: unknown.
 
Family: Armadillidiidae
Genus: Uncertain
Two specimens, species uncertain.
Reference: Serrano et al., 2007 [84] (amber); Weitschat and Wichard, 2010 [85] (amber).
Age: Lower Miocene, Cenozoic; Paleogene Eocene, Cenozoic.
Fossil locality: Mexico; Baltic, northern Europe.
 
Genus: Armadillidium Brandt
One specimen, species uncertain.
Reference: Hyžný and Dávid, 2017 [86] (rock).
Age: Upper Oligocene, Cenozoic.
Fossil locality: Hungary.
 
Family: Ligiidae
Genus: Ligia Fabricius, 1798
Two specimens, species uncertain.
Reference: Néraudeau, 2008 [87] (amber); Spahr, 1993 [47] (amber).
Age: Albian, Cretaceous, Mesozoic; Eocene, Paleogene Cenozoic.
Fossil locality: France; Baltic, northern Europe.
 
Family: Philosciidae
Genus: Uncertain
One specimen, species uncertain.
Reference: Schmalfuss, 1984 [58] (amber).
Age: Oligocene-Miocene, Cenozoic.
Fossil locality: Dominican Republic.
 
Family: Platyarthridae
Genus: Trichorhina Budde-Lund, 1908
One specimen, species uncertain.
Reference: Schmalfuss, 1984 [58] (amber).
Age: Oligocene Miocene.
Fossil locality: Dominican Republic.
 
Family: Porcellionidae
Genus: Uncertain
One specimen, species uncertain.
Reference: Perkovsky et al., 2010 [88] (amber).
Age: Oligocene-Miocene, Cenozoic.
Fossil locality: Ukraine.
 
Family: Styloniscidae or Trichoniscidae
Genus: Unccertain
One specimen, species uncertain.
Reference: Schmalfuss, 1984 [58] (amber).
Age: Oligocene-Miocene, Cenozoic.
Fossil locality: Dominican Republic.
 
Family: Trachelipodidae
Genus: Uncertain
Two specimens, species uncertain
Reference: Weitschat and Wichard, 2010 [85] (amber); Perkovsky et al., 2010 [88] (amber).
Age: Paleogene-Eocene, Cenozoic; Upper Eocene, Cenozoic.
Fossil locality: Baltic, northern Europe. Ukraine.
 
Family: Tylidae
Genus: Uncertain
One specimen, species uncertain
Reference: This study (amber).
Age: Cenomanian, Cretaceous Mesozoic.
Fossil locality: Myanmar.
Table 1. Species of fossil terrestrial isopod per family and geological era.
Table 1. Species of fossil terrestrial isopod per family and geological era.
FamilyMesozoicCenozoic
Agnaridae -1 species [45]
Armadillidae 1 species [39]-
Armadillidiidae -5 species and 3 records, status uncertain [45,46,52,54,56,84,85,86]
Delatorreiidae -2 species [58]
Detonidae -1 species [61]
Eubelidae-1 species [63]
Ligiidae 1 species and 1 record, status uncertain [29,87]1 species and 1 record, status uncertain [47,65]
Olibrinidae-1 species [61]
Oniscidae-2 species [56,68]
Philosciidae-2 species and 1 record, status uncertain [58,69]
Platyarthridae-1 record, status uncertain [58]
Porcellionidae-6 species (1 species, age unknown) and 1 record, status uncertain [45,56,68,72,88]
Scleropactidae-3 species [61,73]
Stenoniscidae-2 species [61]
Trachelipodidae-1 species (age unknown) and 2 records, status uncertain [72,85,88]
Trichoniscidae 1 species [29]2 species and 1 record, status uncertain [46,68,77]
Detonidae?1 species [29]-
Styloniscidae?1 species [38]-
Styloniscidae or Trichoniscidae -1 record, status uncertain [58]
Tylidae1 record, status uncertain (this study) 1 species [79]
Unclear4 records, status uncertain [80,81,82,83]1 record status, uncertain (1 species ages unknown) [70]
total5 species and 6 records, status uncertain31 species (3 species ages unknown) and 12 records, status uncertain (1 species ages unknown)

4. Discussion

The specimen described above is the second fossil record of the family Tylidae, the first of this family for Kachin amber (Late Cretaceous) [31]. As all the other taxa in this family, this specimen is able to roll up into a ball [17,41]. Conglobation ability is common, in mammals, such as in hedgehogs, armadillos, and pangolins; and in arthropods, such as pill millipedes (Glomerida) [89], beetles (Ceratocanthinae) [90], cockroaches (Blaberidae) [91], and pill bugs (Oniscidea). In terrestrial isopods, there are many groups (e.g., Armadillidae; Armadillidiidae) with the conglobation ability. The conglobation ability has appeared several times independently within the Oniscidea [40].
The fossil records of Oniscidea are rare. While the earliest fossil record of Oniscidea only dates back to the Early Cretaceous, based on phylogenetic studies and the palaeobiogeographic context of fossil specimens an origin of Oniscidea in the Late Paleozoic has been proposed [14,30]. To date, there are 54 terrestrial isopod fossil records within 20 families [Table 1]. The classification position of some groups is not clear due to the lack of detailed morphological characteristics [see list]. Among them, the earliest fossil records are from Spanish amber (Cretaceous Albian, 105 Ma) [29,92].
Forty-one records of terrestrial isopods have been reported from the Cenozoic deposits of the Baltic, Dominican Republic, Ukraine, Kenya, India, and Mexico. All the major modern families of woodlice were already present and widely distributed geographically at that time. Twelve records of terrestrial isopods come from the Mesozoic (Cretaceous), mainly from Spain, France, and Myanmar [Table 1]. It seems unlikely to find inclusions of oniscideans in amber older than Cretaceous because the amber-producing plants, although recorded from Carboniferous, did not produce enough sap to trap macroscopic invertebrates until the Late Jurassic [57]. The fossils belong to four out of five major groups of Oniscidea: Diplocheta and Tylida, which are the earliest diverged clades, and Synocheta and Crinocheta, at the higher phylogenetic level [93].
Among crustaceans, three major groups have invaded terrestrial environments: the peracarid orders Amphipoda. Isopoda, and Decapoda [94]. In Isopoda, except for Oniscidea, species in other suborders either live in the ocean or in fresh water. Terrestrial isopods (Oniscidea) are the only isopods fully adapted to live on land (except a few species that have become secondarily adapted and returned to aquatic habitats [5]). It is widely believed that the invasion of terrestrial environments from the sea by isopods has involved a transitional step within the supralittoral, instead of using freshwater [95].
The two earliest diverged families, Ligiidae and Tylidae, successfully colonised the supralittoral [5,26,96]. The evolution of terrestrial isopods from ancestral marine isopods was proposed to have proceeded from a Ligia-like ancestor [95]. This statement has been recently questioned with molecular evidence [13,16] that showed Ligia to be related to marine isopods and not to the rest of Oniscidea. All the extant species of Tylos live in intertidal and supralittoral areas, and a large number of marine taxa are found in Burmese amber [37]. These data confirm the paleogeographic reconstruction of the area with the Burmese amber indicating the influence of a marine environment [96]. This could mean that the Tylidae also lived near the sea during the Cretaceous.

5. Conclusions

In this paper, we report the first fossil record of a terrestrial isopods with conglobation ability from amber of Kachin State, which is the second fossil record of Tylidae. To date, a total of 54 records of isopod fossils from 20 families have been reported. The fossils of Oniscidea are largely biased toward preservation in amber and, until recently, most terrestrial isopod fossils dated from the Cenozoic period. Due to the manca stage of the specimen described, its precise taxonomic position at genus and species level cannot be established. However, the morphological characteristics of the specimen show that it is undoubtedly a member of Tylidae, morphologically close to the genus Tylos.

Author Contributions

Conceptualisation, M.B. and X.W.; methodology, M.B., S.L. and J.L.; sample collection, J.L. and D.Z.; sample identification, J.L., S.T. and D.Z.; photo capture and drawing, J.L. and S.L.; writing—original draft, J.L.; writing—review and editing, J.L., S.T., S.L., Y.L., D.Z., X.W. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by National Science Foundation of China (Nos. 32200366, 32270468); National Key R&D Program of China (No. 2022YFC2601200); National Science & Technology Fundamental Resources Investigation Program of China (Nos. 2022FY100500, 2019FY100400, 2019FY101800); Northeast Asia Biodiversity Research Center (NABRI202203); Bureau of International Cooperation, Chinese Academy of Sciences; Guizhou Science and Technology Planning Project (General support- 2022-173); Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (No. 2019QZKK05010101).

Data Availability Statement

The data presented in this study are available in the article.

Acknowledgments

We are grateful to the editor and anonymous reviewers for constructive criticism and valuable comments on the manuscript. We thank Liangxue Cheng from IZAS and Mao Zhang from Capital Normal University (CNU) for taking the photographs in amber.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hornung, E. Evolutionary adaptation of oniscidean isopods to terrestrial life: Structure, physiology and behavior. Terr. Arthropod Rev. 2011, 4, 95–130. [Google Scholar] [CrossRef]
  2. Taiti, S.; Montesanto, G.; Vargas, J.A. Terrestrial Isopoda (Crustacea, Oniscidea) from the coasts of Costa Rica, with descriptions of three new species. Rev. Biol. Trop. 2018, 66, 187–210. [Google Scholar] [CrossRef]
  3. Taiti, S.; Montesanto, G. Troglobiotic terrestrial isopods from Myanmar, with descriptions of a new genus and three new species (Crustacea, Oniscidea). Raffles Bull. Zool. 2020, 35, 109–122. [Google Scholar]
  4. Linsenmair, K.E. Some adaptations of the desert woodlouse Hemilepistus reaumuri (Isopoda, Oniscoidea) to desert environment. Verh. Ges. Okol. Erlangen 1975, 1974, 183–185. [Google Scholar]
  5. Sfenthourakis, S.; Myers, A.A.; Taiti, S.; Lowry, J.K. Terrestrial Environments. In The Natural History of Crustacea: Evolution and Biogeography; Martin, T., Gary, P., Eds.; Oxford University Press: New York, NY, USA, 2020; Volume 8, Chapter 15; pp. 53–79. [Google Scholar]
  6. Schmidt, C. Phylogeny of the Terrestrial Isopoda (Oniscidea): A Review. Arthropod Syst. Phylogeny 2008, 66, 191–226. [Google Scholar]
  7. Holdich, D.; Lincoln, R.; Ellis, J. The biology of terrestrial isopods: Terminology and classification. In Symposia of the Zoological Society of London; Cambridge University Press: Cambridge, UK, 1984; Volume 53, pp. 1–6. [Google Scholar]
  8. Wägele, J.W. Evolution und phylogenetisches System der Isopoda. Zoologica 1898, 140, 1–262. [Google Scholar]
  9. Brusca, R.C.; Wilson, G. A phylogenetic analysis of the Isopoda with some classificatory recommendations. Mem. Queensl. Mus. 1991, 31, 143–204. [Google Scholar]
  10. Erhard, F. Vergleichend-und funktionell-anatomische Untersuchungen am-Pleon der Oniscidea (Crustacea, Isopoda). Zoologica 1995, 145, 1–114. [Google Scholar]
  11. Wilson, G. The phylogenetic position of the Isopoda in the Peracarida: (Crustacea: Malacostraca). Arthropod Syst. Phylogeny 2009, 67, 159–198. [Google Scholar]
  12. Kilpert, F.; Held, C.; Podsiadlowski, L. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Mol. Phylogenet. Evol. 2012, 64, 106–117. [Google Scholar] [CrossRef]
  13. Wetzer, R.; Perez-Losada, M.; Bruce, N.L. Phylogenetic relationships of the family Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) within Sphaeromatidea based on 18S-rDNA molecular data. Zootaxa 2013, 3599, 161–177. [Google Scholar] [CrossRef] [PubMed]
  14. Lins, L.S.F.; Ho, S.Y.W.; Lo, N. An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda). Org. Divers. Evol. 2017, 17, 813–820. [Google Scholar] [CrossRef]
  15. Hua, C.J.; Li, W.X.; Zhang, D.; Zou, H.; Li, M.; Jakovlić, I.; Wu, S.G.; Wang, G.T. Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order. Parasites Vectors 2018, 11, 628. [Google Scholar] [CrossRef] [PubMed]
  16. Dimitriou, A.C.; Taiti, S.; Sfenthourakis, S. Genetic evidence against monophyly of Oniscidea implies a need to revise scenarios for the origin of terrestrial isopods. Sci. Rep. 2019, 9, 18508. [Google Scholar] [CrossRef]
  17. Schmalfuss, H. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttg. Beiträge Nat. 2003, 654, 1–341. [Google Scholar]
  18. Sfendourakis, S.; Taiti, S. Patterns of taxonomic diversity among terrestrial isopods. Zookeys 2015, 515, 13–25. [Google Scholar] [CrossRef]
  19. Cardoso, G.M.; Bastos-Pereira, R.; Ferreira, R.L. A new species of Chaimowiczia from the karstic Serra do Ramalho plateau, Brazil (Oniscidea, Synocheta, Styloniscidae). Subterr. Biol. 2022, 42, 139–149. [Google Scholar] [CrossRef]
  20. Javidkar, M.; King, R.A.; Cooper, S.J.B.; Humphreys, W.F.; Austin, A.D. Taxonomy of Paraplatyarthrus Javidkar and King (Isopoda: Oniscidea: Paraplatyarthridae) with description of five new species from Western Australia, and comments on Australian Trichorhina Budde-Lunde, 1908 (Platyarthridae). Zootaxa 2017, 4243, 401–431. [Google Scholar] [CrossRef]
  21. López-Orozco, C.M.; Carpio-Díaz, Y.M.; Borja-Arrieta, R.; Navas-S, G.R.; Campos-Filho, I.S.; Taiti, S.; Mateos, M.; Olazaran, A.; Caballero, I.C.; Jotty, K.; et al. A glimpse into a remarkable unknown diversity of Oniscideans along the Caribbean coasts revealed on a tiny island. Eur. J. Taxon. 2022, 793, 1–50. [Google Scholar] [CrossRef]
  22. WoRMS. 2023. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=146505 (accessed on 7 February 2023).
  23. Gentile, G.; Campanaro, A.; Carosi, M.; Sbordoni, V.; Argano, R. Phylogeography of Helleria brevicornis Ebner 1868 (Crustacea, Oniscidea): Old and recent differentiations of an ancient lineage. Mol. Phylogenet. Evol. 2010, 54, 640–646. [Google Scholar] [CrossRef]
  24. Lewis, F.; Bishop, L. Tylos australis: A New Species of Tylidae (Isopoda: Oniscidea), a Family Previously not Recorded in Australia. Invertebr. Syst. 1990, 3, 747–757. [Google Scholar] [CrossRef]
  25. Kensley, B.F. Aspects of the biology and ecology of the genus Tylos Latreille. Ann. S. Afr. Mus. 1974, 65, 401–471. [Google Scholar]
  26. Schmalfuss, H.; Vergara, K. The Isopod Genus Tylos (Oniscidea: Tylidae) in Chile, with Bibliographies of All Described Species of the Genus. Stuttgarter Beiträge zur Naturkunde Serie A (Biologie); Staatl. Museum für Naturkunde: Berlin, Germany, 2000; Volume 612, pp. 1–42. [Google Scholar]
  27. Schmalfuss, H. Phylogenetics in Oniscoidea. In Proceedings of the Second Symposium on the Biology of Terrestrial Isopods; Ferrara, F., Argano, R., Manicastri, C., Schmalfus, H., Taiti, S., Eds.; Pubblicato dalla Università degli studi di Firenze con il Contributo del Consiglio Nazionale delle Ricerche: Florence, Italy, 1989; Volume 4, pp. 3–27. [Google Scholar]
  28. Tuf, I.H.; Ďurajková, B. Antipredatory strategies of terrestrial isopods. Zookeys 2022, 1101, 109–129. [Google Scholar] [CrossRef]
  29. Sánchez-García, A.; Peñalver, E.; Delclòs, X.; Engel, M.S. Terrestrial Isopods from Spanish Amber (Crustacea: Oniscidea): Insights into the Cretaceous Soil Biota. Am. Mus. Novit. 2021, 2021, 1–32. [Google Scholar] [CrossRef]
  30. Broly, P.; Deville, P.; Maillet, S. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evol. Ecol. 2013, 27, 461–476. [Google Scholar] [CrossRef]
  31. Shi, G.; Grimaldi, D.A.; Harlow, G.E.; Wang, J.; Wang, J.; Yang, M.; Lei, W.; Li, Q.; Li, X. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 2012, 37, 155–163. [Google Scholar] [CrossRef]
  32. Dabovski, C.; Zagorchev, I.; Vasilev, E.; Dimitrova, E.; Bairaktarov, I. Introduction: Mesozoic evolution and Alpine structure. Geol. Bulg. 2009, 2, 15–37. [Google Scholar] [CrossRef]
  33. Qiang, J.; Chiappe, L.M.; Shu’An, J. A new late Mesozoic confuciusornithid bird from China. J. Vertebr. Paleontol. 1999, 19, 1–7. [Google Scholar] [CrossRef]
  34. Benton, M.J.; Zhonghe, Z.; Orr, P.J.; Fucheng, Z.; Kearns, S.L. The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge of Mesozoic life. Proc. Geol. Assoc. 2008, 119, 209–228. [Google Scholar] [CrossRef]
  35. Zhou, Z. The origin and early evolution of birds: Discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 2004, 91, 455–471. [Google Scholar] [CrossRef]
  36. Grossnickle, D.M.; Polly, P.D. Mammal disparity decreases during the Cretaceous angiosperm radiation. Proc. Biol. 2013, 280, 20132110. [Google Scholar] [CrossRef] [PubMed]
  37. Ross, A.J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2021. Palaeoentomology 2022, 5, 027–045. [Google Scholar] [CrossRef]
  38. Broly, P.; Maillet, S.; Ross, A.J. The first terrestrial isopod (Crustacea: Isopoda: Oniscidea) from Cretaceous Burmese amber of Myanmar. Cretac. Res. 2015, 55, 220–228. [Google Scholar] [CrossRef]
  39. Poinar, G. A new genus of terrestrial isopods (Crustacea: Oniscidea: Armadillidae) in Myanmar amber. Hist. Biol. 2018, 32, 583–588. [Google Scholar] [CrossRef]
  40. Schmid, C. Contribution to the phylogenetic system of the Crinocheta (Crustacea, Isopoda). Part 1. (Olibrinidae to Scyphacidae s. str). Zoosyst Evol. 2002, 78, 275–352. [Google Scholar] [CrossRef]
  41. Schmalfuss, H.; Ferrara, F. Terrestrial Isopods from West Africa: Part 2: Families Tylidae, Ligiidae, Trichoniscidae, Styloniscidae, Rhyscotidae, Halophilosciidae, Philosciidae, Platyarthridae, Trachelipidae, Porcellionidae, Armadillidiidae. Monit. Zool. Ital. 1978, 11, 18–19. [Google Scholar]
  42. Verhoeff, K.W. Über mediterrane Oniscoideen, namentlich Porcellioniden. 23. Isopoden-Aufsatz. Jahreshefte des Vereins für waterl. Jahresh. Ver. Vaterl. Naturk. Württ 1917, 73, 144–173. [Google Scholar]
  43. Gruner, H.E. Krebstiere oder Crustacea V. Isopoda 2. Lieferung. In Die Tierwelt Deutschlands; Dalll, F., Ed.; Fischer: Jena, Germany, 1966; Volume 53, pp. 151–380. [Google Scholar]
  44. Koch, K.L. Deutschlands Crustaceen, Myriapoden und Arachniden: Ein Beitrag zur Deutschen Fauna; Herrich-Schäffer: Regensberg, Switzerland, 1841; Volume 35. [Google Scholar]
  45. Strouhal, H. Isopodenreste Aus der Altplistozänen Spaltenfüllung von Hundsheim Bei Deutsch-Altenburg (Niederösterreich); Springer: Berlin/Heidelberg, Germany, 1954; pp. 51–61. [Google Scholar]
  46. Schumann, H.; Wendt, H. Zur Kenntnis der tierischen Inklusen des Sächsischen Bernsteins. Dtsch. Entomol. Z. 1989, 36, 33–44. [Google Scholar] [CrossRef]
  47. Spahr, U. Ergänzungen und Berichtigungen zu R. Keilbachs Bibliographie und Liste der Bernsteinfossilien—Verschiedene Tiergruppen, ausgenommen Insecta und Araneae. Stuttgarter Beiträge zur Naturkunde B (Geologie und Paläontologie); Staatliches Museum für Naturkunde: Karlsruhe, Germany, 1993; Volume 194, pp. 1–72. [Google Scholar]
  48. Dunlop, J.A. Bitterfeld amber. In Biodiversity of Fossils in Amber from the Major World Deposits; Penney, D., Ed.; Siri Scientific Press: Manchester, UK, 2010; pp. 57–68. [Google Scholar]
  49. Brandt, J.F.; Ratzeburg, J.T.C. Medizinische Zoologie, oder, Getreue Darstellung und Beschreibung der Thiere, die in der Arzneimittellehre in Betracht kommen. In Systematischer Folge Herausgegeben; Hirschwald: Berlin, Germany, 1831; Volume 3, pp. 154–196. [Google Scholar]
  50. Fowler, H.W. The Crustacea of New Jersey; MacCrellish & Quigley: Trenton, NJ, USA, 1912. [Google Scholar]
  51. Verhoeff, K.W. Über paläarktische Isopoden. Zool. Anz. 1901, 24, 417–421. [Google Scholar]
  52. Srivastava, G.P.; Shukla, M.; Kumar, P.; Kumar, M.; Prakash, A. Record of Pillbug (Armadillidium) and Millipede (Polyxenus) Remains from the Resin Lumps of Warkalli formation (Upper Tertiary), Kerala Coast. Geol. Soc. India 2006, 67, 715–719. [Google Scholar]
  53. Zenker, C. Descriptions of Oniscus pulchellus and Oniscus cinereus. In Faunae Insectorum Germanicae Initia, Oder Deutschlands Insecten; Panzer, G., Ed.; Felsecker: Nürnberg, Germany, 1798; Volume 62, pp. 21–22. [Google Scholar]
  54. Heer, O. Die Urwelt der Schweiz; Schulthess: Zurich, Switzerland, 1865. [Google Scholar]
  55. Latreille, P.A. Histoire Naturelle Générale et Particulière des Crustacés et des Insectes; Dufart: Paris, France, 1802; Volume 73, pp. 1–413. [Google Scholar]
  56. Dalens, H.; Bouthier, A. Oniscoïdes subfossiles trouvés dans une fosse gallo-romaine du IIème siècle après J.-C. Bull. Soc. D’histoire Nat. Toulouse 1985, 121, 85–88. [Google Scholar]
  57. Saussure, H. Diagnoses de quelques Crustacés nouveaux des Antilles et du Mexique. Rev. Mag. Zool. Pure Apliquée 1857, 9, 304–308. [Google Scholar]
  58. Schmalfuss, H. Two new species of the terrestrial isopod genus Pseudarmadillo from Dominican amber (Amber-Collection Stuttgart: Crustacea, Isopoda, Pseudarmadillidae). Stuttg. Beitr. Nat. 1984, 14. [Google Scholar] [CrossRef]
  59. Uljanin, A. Rakoobrazniyia Isopoda. In Puteshestvie v Turkestan; Fedtschenkoi, A., Ed.; St. Petersburg, Zoogeografitcheskije izsledovanija: St. Petersburg, Russian, 1875; Volume 2, pp. 4–21. [Google Scholar]
  60. Mulaik, S.B. Contribución al conocimiento de los Isópodos terrestres de México (lsopoda, Oniscidea). Revista Soc. Mex. Hist. nat. 1960, 21, 79–292. [Google Scholar]
  61. Broly, P.; Serrano-Sánchez, M.D.L.; Vega, F.J. Diversity of the Crinocheta (Crustacea, Isopoda, Oniscidea) from Early Miocene Chiapas amber, Mexico. Rev. Mex. Cienc. Geól. 2018, 35, 203–214. [Google Scholar] [CrossRef]
  62. Budde-Lund, G. Crustacea Isopoda Terrestria per Familias et Genera et Species Descripta; Sumtibus Auctoris: Copenhagen, Denmark, 1885; pp. 281–291. [Google Scholar]
  63. Morris, S.F. A new fossil terrestrial isopod with implications for the East African Miocene land form. Bull. Br. Mus. (Nat. Hist.) Geol. 1979, 32, 71–75. [Google Scholar]
  64. Brandt, J.F. Conspectus monographiae crustaceorum oniscodorum Latreillii. Byulleten Mosk. Obs. Ispyt. Prir. 1833, 6, 171–193. [Google Scholar]
  65. Keilbach, R. Bibliographie und Liste der Arten tierischer Einschlüsse in fossilen Harzen sowie ihrer Aufbewahrungsorte. Dtsch. Entomol. Z. 1982, 29, 129–286. [Google Scholar] [CrossRef]
  66. Linnæus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Vindobonae: London, UK, 1758; pp. 1–824. [Google Scholar]
  67. Audouin, V. Explication sommaire des planches de Crustacés de l’Égypte et de la Syrie, publiées par Jules-César Savigny, Membre de l’Institut; offrant un exposé des caractères naturels des genres, avec la distinction des espèces. Hist. Nat. 1826, 1, 77–98. [Google Scholar]
  68. Koch, C.L.; Berendt, G.C. Die im Bernstein befindlichen Crustaceen, Myriapoden, Arachniden und Apteren der. In Die im Bernstein Befindlichen Organischen Reste der VorweltVorwelt; Berendt, G.C., Göppert, H.R., Eds.; Nicolaische Buchhandlung: Berlin, Germany, 1854; Volume 1, pp. 1–124. [Google Scholar] [CrossRef]
  69. Broly, P.; Serrano-Sánchez, M.D.L.; Rodríguez-García, S.; Vega, F.J. Fossil evidence of extended brood care in new Miocene Peracarida: (Crustacea) from Mexico. J. Syst. Palaeontol. 2017, 15, 1037–1049. [Google Scholar] [CrossRef]
  70. Dollfus, A. Isopode terrestre nouveau recueilli par la mission Foureau-Lamy. Bull. Mus. Natl. Hist. Nat. 1904, 6, 325–326. [Google Scholar]
  71. Miers, E.J. On a collection of Crustacea, Decapoda and Isopoda, chiefly from South America, with descriptions of new genera and species. Proc. Zool. Soc. 1877, 1877, 653–678. [Google Scholar]
  72. Baas, J. Kultur- und Nutzpflanzen aus Römischen Siedlungsgruben in Nidderau-Heldenbergen (Main-Kinzig-Kreis); Saalburg: Bad Homburg, Germany, 1982; pp. 110–119. [Google Scholar]
  73. Schmalfuss, H. Die ersten Landasseln aus Dominikanischem Bernstein mit einer systematisch-phylogenetischen Revision der Familie Sphaeroniscidae (Stuttgarter Bernsteinsammlung: Crustacea, Isopoda, Oniscoidea). Stuttg. Beitr. Nat. 1980, 61, 1–12. [Google Scholar]
  74. Schmidt, C. Revision of the Neotropical Scleropactidae (Crustacea: Oniscidea). Zool. J. Linn. Soc. 2007, 151, 1–339. [Google Scholar] [CrossRef]
  75. Budde-lund, G. Isopoda von Madagaskar und Ostafrika mit Diagnosen verwandter Arten; E Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 1908; Volume 3, pp. 265–308. [Google Scholar]
  76. Verhoeff, K.W. Über Isopoden. 15. Aufsatz. Arch. Biontogie Berl. 1838, 2, 335–387. [Google Scholar]
  77. Koch, K.L. Deutschlands Crustaceen, Myriapoden und Arachniden: Ein Beitrag zur Deutschen Fauna; Herrich-Schäffer: Regensberg, Switzerland, 1838; Volume 22. [Google Scholar]
  78. Krauss, F. Die Südafrikanischen Crustaceen. Eine Zusammenstellung Aller Bekannten Malacostraca, Bemerkungen über Deren Lebensweise und Geographische Verbreitung, Nebst Beschrwibung und Abbildung Mehrer Neuen Arten. Schweizerbartsche: Stuttgart, Germany, 1843; p. 68. [Google Scholar]
  79. Haughton, S.H. The late Tertiary and Recent deposits of the west coast of South Africa. Trans. Geol. Soc. S. Afr. 1931, 34, 19–57. [Google Scholar]
  80. Alonso, J.; Arillo, A.; Barrón, E.; Corral, J.C.; Grimalt, J.; López, J.F.; López, R.; Martínez-Delclòs, X.; Ortuño, V.; Peñalver, E.; et al. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrian Basin). J. Paleontol. 2000, 74, 158–178. [Google Scholar] [CrossRef]
  81. Delclòs, X.; Arillo, A.; Peñalver, E.; Barrón, E.; Soriano, C.; Valle, R.L.D.; Bernárdez, E.; Corral, C.; Ortuño, V.M. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol. 2007, 6, 135–149. [Google Scholar] [CrossRef]
  82. Perrichot, V. Early Cretaceous amber from south-western France: Insight into the Mesozoic litter fauna. Geol. Acta 2004, 2, 9–22. [Google Scholar]
  83. Ross, A.; Mellish, C.; York, P.; Crighton, B. Biodiversity of Fossils in Amber from the Major World Deposits; Siri Scientific Press: Manchester, UK, 2010; pp. 208–235. [Google Scholar]
  84. Serrano, M.L.; Vega, F.; Coutino, M. Terrestrial isopods included in Miocene amber from Chiapas, Mexico. In Proceedings of the Geological Society of America, 2007 Annual Meeting, Denver, CO, USA; 2007; pp. 76–77. [Google Scholar]
  85. Weitschat, W.; Wichard, W. Baltic Amber. In Biodiversity of Fossils in Amber from the Major World Deposits; Penney, D., Ed.; Siri Scientific Press: Manchester, UK, 2010; pp. 80–115. [Google Scholar]
  86. Hyžný, M.; Dávid, A. A remarkably well-preserved terrestrial isopod (Peracarida: Isopoda: Armadillidiidae) from the upper Oligocene of Hungary, with remarks on the Oniscidean taphonomy. Palaeontol. Electron. 2017, 20, 20–21. [Google Scholar] [CrossRef]
  87. Néraudeau, D. Nouveaux regards sur l’ évolution et la biodiversité passeé. In Terre, Planète Mystérieuse; Grappin, C., Cardin, P., Goffé, B., Jolivet, L., Montagner, J., Eds.; Le Cherche Midi: Paris, France, 2008; pp. 129–138. [Google Scholar]
  88. Perkovsky, E.E.; Zosimovich, V.Y.; Vlaskin, A.P. Rovno amber. In Biodiversity of Fossils in Amber from the Major World Deposits; Penney, D., Ed.; Siri Scientific Press: Manchester, UK, 2010; pp. 116–136. [Google Scholar]
  89. Liu, W.; Golovatch, S. The first representatives of the millipede family Glomeridellidae (Diplopoda, Glomerida) recorded from China and Indochina. Zookeys 2020, 954, 1–15. [Google Scholar] [CrossRef] [PubMed]
  90. Ballerio, A.; Grebennikov, V.V. Rolling into a ball: Phylogeny of the Ceratocanthinae (Coleoptera: Hybosoridae) inferred from adult morphology and origin of a unique body enrollment coaptation in terrestrial arthropods. Arthr. Syst. Phylogeny 2016, 74, 23–52. [Google Scholar]
  91. Lu, Y.; Ballerio, A.; Wang, S.; Zou, Z.; Gorb, S.N.; Wang, T.; Li, L.; Ji, S.; Zhao, Z.; Li, S.; et al. The evolution of conglobation in Ceratocanthinae. Commun. Biol. 2022, 5, 777. [Google Scholar] [CrossRef] [PubMed]
  92. Barrón, E.; Peyrot, D.; Rodríguez-López, J.P.; Meléndez, N.; López Del Valle, R.; Najarro, M.; Rosales, I.; Comas-Rengifo, M.J. Palynology of Aptian and upper Albian (Lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 2015, 52, 292–312. [Google Scholar] [CrossRef]
  93. Erhard, F. Phylogenetic relationships within the Oniscidea (Crustacea, Isopoda). Isr. J. Zool. 1998, 44, 303–309. [Google Scholar]
  94. Richardson, A.; Araujo, P.B. Lifestyles of terrestrial Crustaceans. In The Natural History of History f the Crustacea; Volume 2: Lifestyles and Feeding Biology; Thiel, M., Walting, L., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 299–336. [Google Scholar]
  95. Carefoot, T.H.; Taylor, B.E. Ligia: A prototypal terrestrial isopod. In Terrestrial Isopod Biology, 1st ed.; Rotterdam, A.A., Ed.; CRC Press: London, UK, 1995; Volume 9, pp. 47–60. [Google Scholar]
  96. Mao, Y.; Liang, K.; Su, Y.; Li, J.; Rao, X.; Zhang, H.; Xia, F.; Fu, Y.; Cai, C.; Huang, D. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 2018, 1, 91–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Lu, J.; Taiti, S.; Li, S.; Lu, Y.; Zhuo, D.; Wang, X.; Bai, M. First Fossil of Tylidae (Isopoda: Oniscidea) in Kachin Amber, Myanmar, with a List of All Oniscidea Fossil Records. Foss. Stud. 2023, 1, 15-33. https://doi.org/10.3390/fossils1010003

AMA Style

Lu J, Taiti S, Li S, Lu Y, Zhuo D, Wang X, Bai M. First Fossil of Tylidae (Isopoda: Oniscidea) in Kachin Amber, Myanmar, with a List of All Oniscidea Fossil Records. Fossil Studies. 2023; 1(1):15-33. https://doi.org/10.3390/fossils1010003

Chicago/Turabian Style

Lu, Jinbo, Stefano Taiti, Sheng Li, Yuanyuan Lu, De Zhuo, Xinpu Wang, and Ming Bai. 2023. "First Fossil of Tylidae (Isopoda: Oniscidea) in Kachin Amber, Myanmar, with a List of All Oniscidea Fossil Records" Fossil Studies 1, no. 1: 15-33. https://doi.org/10.3390/fossils1010003

Article Metrics

Back to TopTop