Previous Issue
Volume 2, March
 
 

Lipidology, Volume 2, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 6061 KiB  
Article
Effect of Fatty Acid Mixture on the Hyperplastic and Hypertrophic Growth of Subcutaneous Bovine Stromal Vascular Fraction Cells In Vitro
by Aliute N. S. Udoka and Susan K. Duckett
Lipidology 2025, 2(2), 8; https://doi.org/10.3390/lipidology2020008 - 7 Apr 2025
Viewed by 106
Abstract
Background: Adipose tissue growth follows a biphasic process involving both cellular hyperplasia (an increase in adipocyte number) and hypertrophy (an increase in adipocyte size). Rumen-protected fatty acid supplements have been utilized to alter fat deposition, modify the fatty acid composition of meat, and [...] Read more.
Background: Adipose tissue growth follows a biphasic process involving both cellular hyperplasia (an increase in adipocyte number) and hypertrophy (an increase in adipocyte size). Rumen-protected fatty acid supplements have been utilized to alter fat deposition, modify the fatty acid composition of meat, and reduce methane emissions. However, limited research has explored how different fatty acid mixtures influence adipose tissue’s biphasic growth phases. Methods: The objectives of this study are to investigate the effects of fatty acid mixtures (seven different mixtures) on: (1) hyperplasia of undifferentiated stromal vascular fraction (SVF) cells, or (2) hypertrophy of chemically differentiated SVF cells isolated from subcutaneous adipocytes of finished steers. Results: Mixtures containing palmitic and linoleic acids stimulated hyperplasia, enhancing the proliferation of undifferentiated SVF cells, while mixtures with oleic acid (50%) predominantly promoted hypertrophy, driving lipid accumulation and adipocyte maturation. Conversely, mixtures composed solely of saturated fatty acids (50% palmitic and 50% stearic acids) exhibited a profound inhibitory effect on both hyperplasia and hypertrophy, underscoring the importance of fatty acid composition in regulating adipogenesis. Conclusions: These findings demonstrate that the composition of fatty acid mixtures directly influences adipogenesis and lipogenesis in vitro, highlighting their potential role in designing tailored rumen-protected supplements for modifying fat deposition in livestock. Full article
Show Figures

Figure 1

11 pages, 5802 KiB  
Article
Lipid-Functionalized Electrospun Chitosan Gauze Performs Comparably to Standard of Care in Contaminated Complex Trauma Model
by Ezzuddin Abuhussein, Luke J. Tucker, Andie R. Tubbs, Lauren B. Priddy and Jessica Amber Jennings
Lipidology 2025, 2(2), 7; https://doi.org/10.3390/lipidology2020007 - 6 Apr 2025
Viewed by 131
Abstract
(1) Background: Musculoskeletal trauma from combat wounds, accidents, or surgeries is highly associated with infections and hospitalization. The current “gold standard” for such injuries when access to hospitals is limited is administering antibiotics and opioids; however, they are not ideal treatments due to [...] Read more.
(1) Background: Musculoskeletal trauma from combat wounds, accidents, or surgeries is highly associated with infections and hospitalization. The current “gold standard” for such injuries when access to hospitals is limited is administering antibiotics and opioids; however, they are not ideal treatments due to their contributions to antibiotic resistance and the opioid epidemic. Electrospun chitosan acylated with lipids and loaded with hydrophobic drugs has been shown to release the therapeutics systemically and to prevent infections. (2) Methods: Electrospun chitosan membranes (ESCMs) were fabricated and acylated using decanoyl chloride. FTIR was used to confirm acylation through the presence of ester bonds and acyl chains. ESCMs were loaded with the quorum-sensing molecule cis-2-decenoic acid (C2DA) and the local anesthetic bupivacaine and then implanted in rat femurs for 3 days. Afterward, the rats were euthanized, and CFUs were measured on retrieved bone, tissue, and treatment material. (3) Conclusions: While ESCMs prevented bacterial growth on the surface of the material, controls outperformed treatment groups. This is possibly due to bupivacaine’s role in inhibiting sodium channels, which favors the production of Th2-type cytokines associated with immune response suppression. Furthermore, ESCMs provide a large surface area for bacteria to grow on and form bridges between nanofibers. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop