Identification and Genomic Characterization of Aeromonas dhakensis from a Human Sample
Abstract
1. Background
2. Materials and Methods
2.1. Clinical and Microbiological Procedures
2.2. Genomic Sequencing Analysis
2.3. Resistome Characterization
3. Results
3.1. Clinical Case and Microbiological Findings
3.2. Genomic Confirmation of Aeromonas dhakensis
3.3. Antimicrobial Resistance Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Bravo, A.; Figueras, M.J. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juan, H.J.; Tang, R.B.; Wu, T.C.; Yu, K.W. Isolation of Aeromonas hydrophila in children with diarrhea. J. Microbiol. Immunol. Infect. 2000, 33, 115–117. [Google Scholar] [PubMed]
- Minnaganti, V.R.; Patel, P.J.; Iancu, D.; Schoch, P.E.; Cunha, B.A. Necrotizing fasciitis caused by Aeromonas hydrophila. Heart Lung 2000, 29, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhao, Q.; Li, D.; Gao, J.; Zhang, X.; Shu, Q.; Han, X. Fulminant fatal pneumonia and bacteremia due to Aeromonas dhakensis in an immunocompetent man: A case report and literature review. Front. Cell. Infect. Microbiol. 2024, 14, 1359422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carusi, J.; Kabuki, D.Y.; de Seixas Pereira, P.M.; Cabral, L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res. Int. 2024, 175, 113710. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, M.; Wang, Y.; Zhang, H.; Jia, X.; Jia, P.; Yang, W.; Chen, J.; Song, G.; Zhang, J.; et al. Emergence and clonal expansion of Aeromonas hydrophila ST1172 that simultaneously produces MOX-13 and OXA-724. Antimicrob. Resist. Infect. Control 2024, 13, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hilt, E.E.; Fitzwater, S.P.; Ward, K.; de St Maurice, A.; Chandrasekaran, S.; Garner, O.B.; Yang, S. Carbapenem Resistant Aeromonas hydrophila Carrying blaimiH7 Isolated From Two Solid Organ Transplant Patients. Front. Cell. Infect. Microbiol. 2020, 10, 563482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.L.; Lamy, B.; Ko, W.C. Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Front. Microbiol. 2016, 7, 793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.L.; Wu, C.J.; Chen, C.S.; Tsai, P.J.; Tang, H.J.; Ko, W.C. A comparative study of clinical Aeromonas dhakensis and Aeromonas hydrophila isolates in southern Taiwan: A. dhakensis is more predominant and virulent. Clin. Microbiol. Infect. 2014, 20, O428–O434. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.H.M.; Nguyen, Q.; Voong, P.V.; Chau, V.; Nguyen, N.H.T.; Nguyen, T.H.M.; Vo, P.H.; Nguyen, L.T.; Ha, T.T.P.; Nguyen, L.P.H.; et al. Genomic characterization of Aeromonas spp. isolates from striped catfish with motile Aeromonas septicemia and human bloodstream infections in Vietnam. Microb. Genom. 2024, 10, 001248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruker Daltonik, GmbH. MBT Compass User Manual; Revision C; Bruker Daltonik GmbH: Bremen, Germany, 2016. [Google Scholar]
- Babraham Bioinformatics—FastQC. A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 25 March 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Orakov, A.; Fullam, A.; Coelho, L.P.; Khedkar, S.; Szklarczyk, D.; Mende, D.R.; Schmidt, T.S.B.; Bork, P. GUNC: Detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 2021, 22, 178. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Lumpe, J.; Gumbleton, L.; Gorzalski, A.; Libuit, K.; Varghese, V.; Lloyd, T.; Tadros, F.; Arsimendi, T.; Wagner, E.; Stephens, C.; et al. GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking): A methodology to rapidly leverage whole genome sequencing of bacterial isolates for clinical identification. PLoS ONE 2023, 18, e0277575. [Google Scholar] [CrossRef]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- PubMLST—Public Databases for Molecular Typing and Microbial Genome Diversity. Available online: https://pubmlst.org/ (accessed on 25 March 2025).
- Liang, Q.; Liu, C.; Xu, R.; Song, M.; Zhou, Z.; Li, H.; Dai, W.; Yang, M.; Yu, Y.; Chen, H. fIDBAC: A Platform for Fast Bacterial Genome Identification and Typing. Front. Microbiol. 2021, 12, 723577. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Banfield, J.F. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017, 11, 2864–2868. [Google Scholar] [CrossRef]
- Seemann, T. Tseemann/Snippy. (Original Work Published 2014). 2025. Available online: https://github.com/tseemann/snippy (accessed on 25 March 2025).
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Shimoyama, Y. ANIclustermap: A Tool for Drawing ANI Clustermap Between All-vs-All Microbial Genomes. (Original Work Published 2022). 2022. Available online: https://github.com/moshi4/ANIclustermap (accessed on 25 March 2025).
- GitHub—Arpcard/Rgi: Resistance Gene Identifier (RGI). Software to Predict Resistomes from Protein or Nucleotide Data, Including Metagenomics Data, Based on Homology and SNP Models. GitHub. Available online: https://github.com/arpcard/rgi (accessed on 25 March 2025).
- Seemann, T. Tseemann/Abricate. (Original Work Published 2014). 2025. Available online: https://github.com/tseemann/abricate (accessed on 25 March 2025).
- Sievers, F.; Higgins, D.G. Clustal omega. Curr. Protoc. Bioinform. 2014, 48, 3–13. [Google Scholar] [CrossRef]
- Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H.E. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb. Genom. 2020, 6, e000435. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. In Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed; CLSI guideline M45: Wayne, PA, USA, 2016; Available online: www.clsi.org (accessed on 21 March 2025).
- Soto Peleteiro, A.; Gómez, J.; Sousa, A.; Rodríguez, A.; Pérez, M.; Martínez, L.; Argibay, A.; Nodar, A. Infección por Aeromonas: Revisión de 35 casos. In Proceedings of the XXXV Congreso Nacional de la Sociedad Española de Medicina Interna (SEMI), Murcia, Spain, 19–21 November 2014; Hospital Xeral de Vigo: Vigo, Spain. [Google Scholar]
- Tena, D.; González-Praetorius, A.; Gimeno, C.; Pérez-Pomata, M.T.; Bisquert, J. Infección extraintestinal por Aeromonas spp.: Revisión de 38 casos. Enferm. Infecc. Microbiol. Clin. 2007, 25, 235–241. [Google Scholar] [CrossRef]
- García-Irure, J.; Navascués, A.; Vivanco, M.; Rodrigo, A. Peritonitis bacteriana espontánea y bacteriemia por Aeromonas hydrophila. An. Sist. Sanit. Navar. 2008, 26, 429–431. [Google Scholar] [CrossRef]
- De Luca, F.; Giraud-Morin, C.; Rossolini, G.M.; Docquier, J.D.; Fosse, T. Genetic and biochemical characterization of TRU-1, the endogenous class C beta-lactamase from Aeromonas enteropelogenes. Antimicrob. Agents Chemother. 2010, 54, 1547–1554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Segatore, B.; Massidda, O.; Satta, G.; Setacci, D.; Amicosante, G. High specificity of imiH-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance. Antimicrob. Agents Chemother. 1993, 37, 1324–1328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central][Green Version]
- Rossolini, G.M.; Zanchi, A.; Chiesurin, A.; Amicosante, G.; Satta, G.; Guglielmetti, P. Distribution of imiH or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob. Agents Chemother. 1995, 39, 346–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massidda, O.; Rossolini, G.M.; Satta, G. The Aeromonas hydrophila imiH gene: Molecular heterogeneity among class B metallo-beta-lactamases. J. Bacteriol. 1991, 173, 4611–4617. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Francesc, M. Lectura interpretada del antibiograma de bacilos gram negativos no fermentadores. Enferm. Infecc. Microbiol. Clin. 2010, 28, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Okafor, A.C.; Ogbo, F.C.; Cabal Rosel, A.; Stöger, A.; Akharaiyi, F.C.; Prieto, B.; Allerberger, F.; Ruppitsch, W. Genome Sequence of OXA-726-Encoding Aeromonas dhakensis Igbk (Sequence Type 1171) from an Edible Snail Traded in Nigeria. Microbiol. Resour. Announc. 2022, 11, e0034322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elorza, A.; Rodríguez-Lago, I.; Martínez, P.; Hidalgo, A.; Aguirre, U.; Cabriada, J.L. Infección gastrointestinal por Aeromonas: Incidencia y su posible relación con la enfermedad inflamatoria intestinal. Gastroenterol. Y Hepatol. 2020, 43, 614–619. [Google Scholar] [CrossRef]
- Alonso Serena, M.; Franchi, A.; Asef, K.; Kunst, A.; De Aguilar, L.; Almuzara, M. Infecciones por Aeromonas spp. en pacientes internados en un hospital general de agudos. In Proceedings of the XVII Congreso SADI 2017, Mar del Plata, Argentina, 15–17 June 2017. [Google Scholar]
- Lagier, J.C.; Hugon, P.; Khelaifia, S.; Fournier, P.E.; La Scola, B.; Raoult, D. The Rebirth of Culture in Microbiology Through the Example of Culturomics to Study Human Gut Microbiota. [Internet]. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef]
- Dubourg, G.; Baron, S.; Cadoret, F.; Couderc, C.; Fournier, P.E.; Lagier, J.C.; Raoult, D. From Culturomics to Clinical Microbiology and Forward. Emerg. Infect. Dis. 2018, 24, 1683–1690. [Google Scholar] [CrossRef]
- Roh, H.; Kannimuthu, D. Comparative resistome analysis of Aeromonas species in aquaculture reveals antibiotic resistance patterns and phylogeographic distribution. Environ. Res. 2023, 239 Pt 2, 117273. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, C.; Ma, C.; Cai, H.; Jiang, X.; Zhai, S.; Xu, X.; Lin, M. Comparative genomics analysis of the multidrug-resistant Aeromonas hydrophila MX16A providing insights into antibiotic resistance genes. Front. Cell. Infect. Microbiol. 2022, 12, 1042350. [Google Scholar] [CrossRef]
- Fono-Tamo, E.U.K.; Kamika, I.; Dewar, J.B.; Lekota, K.E. Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics 2023, 12, 131. [Google Scholar] [CrossRef]
MALDI-TOF MS Identification Results | Score |
---|---|
Aeromonas hydrophila | 2.22 |
Aeromonas caviae | 2.20 |
Aeromonas jandaei | 2.11 |
Aeromonas hydrophila ssp. ranae | 2.09 |
Aeromonas caviae | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badenas-Alzugaray, D.; Tristancho-Baró, A.; García-Lechuz, J.M.; Burillo-Navarrete, N.; Sanz-Sanz, S.; Milagro-Beamonte, A.M.; López-Calleja, A.I.; Rezusta-López, A. Identification and Genomic Characterization of Aeromonas dhakensis from a Human Sample. Acta Microbiol. Hell. 2025, 70, 34. https://doi.org/10.3390/amh70030034
Badenas-Alzugaray D, Tristancho-Baró A, García-Lechuz JM, Burillo-Navarrete N, Sanz-Sanz S, Milagro-Beamonte AM, López-Calleja AI, Rezusta-López A. Identification and Genomic Characterization of Aeromonas dhakensis from a Human Sample. Acta Microbiologica Hellenica. 2025; 70(3):34. https://doi.org/10.3390/amh70030034
Chicago/Turabian StyleBadenas-Alzugaray, David, Alexander Tristancho-Baró, Juan Manuel García-Lechuz, Natalia Burillo-Navarrete, Sara Sanz-Sanz, Ana María Milagro-Beamonte, Ana Isabel López-Calleja, and Antonio Rezusta-López. 2025. "Identification and Genomic Characterization of Aeromonas dhakensis from a Human Sample" Acta Microbiologica Hellenica 70, no. 3: 34. https://doi.org/10.3390/amh70030034
APA StyleBadenas-Alzugaray, D., Tristancho-Baró, A., García-Lechuz, J. M., Burillo-Navarrete, N., Sanz-Sanz, S., Milagro-Beamonte, A. M., López-Calleja, A. I., & Rezusta-López, A. (2025). Identification and Genomic Characterization of Aeromonas dhakensis from a Human Sample. Acta Microbiologica Hellenica, 70(3), 34. https://doi.org/10.3390/amh70030034