Previous Issue
Volume 2, March
 
 

J. Pharm. BioTech Ind., Volume 2, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 6442 KiB  
Article
Effect of Ethanol on the Solubility and Apparent Specific Volume of Sodium Sulfadiazine in Aqueous Mixtures
by Daniel R. Delgado, Fleming Martinez, María Ángeles Peña, Abolghasem Jouyban and William E. Acree, Jr.
J. Pharm. BioTech Ind. 2025, 2(2), 5; https://doi.org/10.3390/jpbi2020005 - 31 Mar 2025
Viewed by 260
Abstract
The main objective of this research was to correlate the equilibrium solubility of sodium sulfadiazine in several {ethanol (EtOH, 1) + water (2)} mixtures reported in mass/volume and mass/mass percentages at different temperatures. Aqueous solubility of sodium sulfadiazine decreases almost linearly with decreasing [...] Read more.
The main objective of this research was to correlate the equilibrium solubility of sodium sulfadiazine in several {ethanol (EtOH, 1) + water (2)} mixtures reported in mass/volume and mass/mass percentages at different temperatures. Aqueous solubility of sodium sulfadiazine decreases almost linearly with decreasing temperature, but it decreases non-linearly with the addition of EtOH to water. Logarithmic solubility was adequately correlated with a bivariate model involving temperature and mixture composition. These solubility results were also well correlated with the Jouyban–Acree-based models. Moreover, an adapted version of the Jouyban–Acree model was used to represent the density of the saturated solvent mixtures at different temperatures. Furthermore, the apparent specific volumes of this drug at saturation were also calculated from densities of saturated solutions and cosolvent mixtures free of drug as well as from the respective mixture compositions. These findings provide valuable insights into the solubility and volumetric behavior of sodium sulfadiazine, which could be useful for pharmaceutical formulation and process optimization. Full article
Show Figures

Figure 1

13 pages, 8637 KiB  
Article
Quantification of Trace Polymorphic Impurity in Celecoxib with Powder X-Ray Diffraction Technique
by Amita G. Dhadphale and Kamini J. Donde
J. Pharm. BioTech Ind. 2025, 2(2), 4; https://doi.org/10.3390/jpbi2020004 - 21 Mar 2025
Viewed by 265
Abstract
A selective inhibitor of cyclooxygenase-2 (COX-2), Celecoxib (CEB), known for its anti-inflammatory properties, can exhibit polymorphism, with Form III often emerging as an undesired crystalline impurity during the green manufacturing process of the preferred Form I. Controlling the Form III content in the [...] Read more.
A selective inhibitor of cyclooxygenase-2 (COX-2), Celecoxib (CEB), known for its anti-inflammatory properties, can exhibit polymorphism, with Form III often emerging as an undesired crystalline impurity during the green manufacturing process of the preferred Form I. Controlling the Form III content in the drug product is crucial, as different crystalline forms can impact drug bioavailability and therapeutic efficacy. This study presents a method to quantify the weight percentage of Form III in the bulk of CEB Form I by employing powder X-ray diffraction (PXRD). Initially, pure Form I and III of CEB were characterized using DSC, FTIR, and PXRD, supporting the method’s development. Binary mixtures, with varying ratios of CEB polymorphs Form I and Form III, were prepared and analyzed using continuous scans over an angular (2θ) range of 2–40. The calibration curve was constructed using 2θ unique peaks for Form I and Form III, respectively. Linear regression analysis exhibited a strong linear relationship within the weight ratio range of 1–20%. The developed method was validated to assess recovery, precision, ruggedness, limits of detection, and quantitation. These findings indicate that the method exhibits repeatability, sensitivity, and accuracy. The newly developed and validated PXRD method is applicable for quality control of CEB Form I produced through the green melt crystallization process by detecting low levels of Form III polymorphic impurity. This research significantly contributes to ensuring the clinical efficacy and manufacturing quality of Celecoxib by providing a reliable method for controlling polymorphic impurities. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop