Information Recognition and Recall in Older Adults Bearing Vascular Risk Factors with or without Diagnosis of Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Method
2.1. Participants
2.2. Procedure
2.3. Instruments
Doors and People Test
2.4. Ethics Statement
2.5. Statistical Analysis
3. Results
3.1. Prerequisites for Mediation Analysis—Correlations
3.2. Mediation Analyses
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baddeley, A.D.; Emslie, H.; Nimmo-Smith, I. The Doors and People Test: A Test of Visual and Verbal Recall and Recognition; Thames Valley Test Company: Bury-St-Edmunds, UK, 1994. [Google Scholar]
- Dickerson, B.C.; Eichenbaum, H. The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology 2010, 35, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Herold, F.; Ludyga, S.; Cheval, B.; Zhang, Z.; Mücke, M.; Kramer, A.F.; Li, J.; Kong, Z.; Zou, L. Neurobehavioral mechanisms underlying the effects of physical exercise break on episodic memory during prolonged sitting. Complement. Ther. Clin. Pract. 2022, 48, 101553. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, J.; Rubens, M.T.; Masangkay, E.; Kalkstein, J.; Gazzaley, A. An expectation-based memory deficit in aging. Neuropsychologia 2011, 49, 1466–1475. [Google Scholar] [CrossRef]
- Bäckman, L.; Small, B.J.; Fratiglioni, L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001, 124 Pt 1, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, G.; Vannini, P. Episodic Memory Impairment Mediates the Loss of Awareness in Mild Cognitive Impairment. Front. Aging Neurosci. 2022, 13, 802501. [Google Scholar] [CrossRef] [PubMed]
- Portet, F.; Ousset, P.J.; Visser, P.J.; Frisoni, G.B.; Nobili, F.; Scheltens, P.; Vellas, B.; Touchon, J. MCI Working Group of the European Consortium on Alzheimer’s Disease (EADC). Mild cognitive impairment (MCI) in medical practice: A critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 714–718. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, L.; Wang, Y.; Liu, Y.; Lo, C.Z.; Guo, Q. Differential associations of visual memory with hippocampal subfields in subjective cognitive decline and amnestic mild cognitive impairment. BMC Geriatr. 2022, 22, 153. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Grigoletto, F.; Maggi, S.; Del Parigi, A.; Reiman, E.M.; et al. Italian Longitudinal Study on Aging Working Group. Vascular risk factors, incidence of MCI, and rates of progression to dementia, Neurology 2004, 63, 1882–1891. [Google Scholar] [CrossRef]
- Ahn, S.; Mathiason, M.A.; Lindquist, R.; Yu, F. Factors predicting episodic memory changes in older adults with subjective cognitive decline: A longitudinal observational study. Geriatr. Nurs. 2021, 42, 268–275. [Google Scholar] [CrossRef]
- Spiro, A.; Brady, C.B. Integrating health into cognitive aging: Toward a preventive cognitive neuroscience of aging. J. Gerontol. 2011, 66 (Suppl. S1), 17–25. [Google Scholar] [CrossRef]
- Fischer, A.L.; O’Rourke, N.; Loken Thornton, W. Age Differences in Cognitive and Affective Theory of Mind: Concurrent Contributions of Neurocognitive Performance, Sex, and Pulse Pressure. J. Gerontol. B Psychol. Sci. Soc. Sci. 2017, 72, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, H.; Harder-Kasten, A.; Sturm, L. The decline of theory of mind in old age is (partly) mediated by developmental changes in domain-general abilities. Br. J. Psychol. 2012, 103, 58–72. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.R.; Leyden, K.M.; Hagler, D.J.; Kucukboyaci, N.E.; Kemmotsu, N.; Tecoma, E.S.; Iragui, V.J. White matter microstructure complements morphometry for predicting verbal memory in epilepsy. Cortex 2014, 58, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Schouten, E.A.; Schiemanck, S.K.; Brand, N.; Post, M.W. Long-term deficits in episodic memory after ischemic stroke: Evaluation and prediction of verbal and visual memory performance based on lesion characteristics. J. Stroke Cerebrovasc. Dis. 2009, 18, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Vakil, E.; Aviv, O.; Mishael, M.; Schwizer, S.; Sacher, A.; Sacher, Y. Direct and indirect measures of context in patients with mild-to-severe traumatic brain injury (TBI): The additive contribution of eye tracking. J. Clin. Neuropsychol. 2019, 41, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Nellessen, N.; Onur, O.A.; Richter, N.; Jacobs, H.I.; Dillen, K.N.; von Reutern, B.; Langen, K.J.; Fink, G.R.; Kukolja, J. Differential neural structures, intrinsic functional connectivity, and episodic memory in subjective cognitive decline and healthy controls. Neurobiol. Aging 2021, 105, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Sauzéon, H.; N’Kaoua, B.; Pala, P.A.; Taillade, M.; Auriacombe, S.; Guitton, P. Everyday-like memory for objects in ageing and Alzheimer’s disease assessed in a visually complex environment: The role of executive functioning and episodic memory. J. Neuropsychol. 2016, 10, 33–58. [Google Scholar] [CrossRef]
- Albert, M.S. The ageing brain: Normal and abnormal memory. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 1997, 352, 1703–1709. [Google Scholar] [CrossRef]
- Merenstein, J.L.; Corrada, M.M.; Kawas, C.H.; Bennett, I.J. Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiol. Aging 2021, 106, 282–291. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Cummings, J.L.; Dekosky, S.T.; Barberger-Gateau, P.; Delacourte, A.; Frisoni, G.; Fox, N.C.; Galasko, D.; et al. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010, 9, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fang, S.; Chen, S.; Tong, Y.; Wang, C.; Hu, Y. Highly efficient visible-light photocatalytic ethane oxidation into ethyl hydroperoxide as a radical reservoir. Chem. Sci. 2021, 12, 5825–5833. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, A.L.; Stomrud, E.; Insel, P.S.; Mattsson, N.; Palmqvist, S.; Hansson, O. β-amyloid pathology and hippocampal atrophy are independently associated with memory function in cognitively healthy elderly. Sci. Rep. 2019, 9, 11180. [Google Scholar] [CrossRef] [PubMed]
- Banks, S.J.; Zhuang, X.; Bayram, E.; Bird, C.; Cordes, D.; Caldwell JZ, K.; Cummings, J.L. Alzheimer’s Disease Neuroimaging Initiative. Default mode network lateralization and memory in healthy aging and Alzheimer’s disease. J. Alzheimer’s Dis. 2018, 66, 1223–1234. [Google Scholar] [CrossRef]
- Chandra, A.; Dervenoulas, G.L.; Politis, M. Alzheimer’s Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J. Neurol. 2018, 266, 1293–1302. [Google Scholar] [CrossRef]
- Bucur, B.; Madden, D.J.; Spaniol, J.; Provenzale, J.M.; Cabeza, R.; White, L.E.; Huettel, S.A. Age-related slowing of memory retrieval: Contributions of perceptual speed and cerebral white matter integrity. Neurobiol. Aging 2008, 29, 1070–1079. [Google Scholar] [CrossRef]
- Launer, L.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.; Foley, D.; White, L.R.; Havlik, R.J. Midlife blood pressure and dementia: The Honolulu-Asia aging study. Neurobiol. Aging 2000, 21, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Nyenhuis, D.L.; Gorelick, P.B.; Geenen, E.J.; Smith, C.A.; Gencheva, E.; Freels, S.; de Toledo-Morrell, L. The pattern of neuropsychological deficits in Vascular Cognitive Impairment-No Dementia (Vascular CIND). Clin. Neuropsychol. 2004, 18, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Scheef, L.; Jankowski, J.; Daamen, M.; Weyer, G.; Klingenberg, M.; Renner, J.; Mueckter, S.; Schürmann, B.; Musshoff, F.; Wagner, M.; et al. An fMRI study on the acute effects of exercise on pain processing in trained athletes. Pain 2012, 153, 1702–1714. [Google Scholar] [CrossRef]
- Perrotin, A.; Desgranges, B.; Landeau, B.; Mézenge, F.; La Joie, R.; Egret, S.; Pélerin, A.; de la Sayette, V.; Eustache, F.; Chételat, G. Anosognosia in Alzheimer disease: Disconnection between memory and self-related brain networks. Ann. Neurol. 2015, 78, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Wirth, S.; Baraduc, P.; Planté, A.; Pinède, S.; Duhamel, J.R. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. PLoS Biol. 2017, 15, e2001045. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.M.; Mormino, E.C.; Huijbers, W.; Schultz, A.P.; Hedden, T.; Sperling, R.A. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits. Neurobiol. Aging 2015, 36, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Dillen, K.N.H.; Jacobs, H.I.L.; Kukolja, J.; Richter, N.; von Reutern, B.; Onur, O.A.; Langen, K.J.; Fink, G.R.F. Functional Disintegration of the Default Mode Network in Prodromal Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 59, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Contreras, J.A.; Goñi, J.; Risacher, S.L.; Amico, E.; Yoder, K.; Dzemidzic, M.; West, J.D.; Mc-Donald, B.C.; Farlow, M.R.; Sporsn, O.; et al. Cognitive complaints in older adults at risk for Alzheimer’s disease are associated with altered resting-state networks. Alzheimer’s Dement. 2017, 6, 40–49. [Google Scholar] [CrossRef]
- Goerlich, K.S.; Votinov, M.; Dicks, E.; Ellendt, S.; Csukly, G.; Habel, U. Neuroanatomical and neuropsychological markers of amnestic MCI: A three-year longitudinal study in individuals unaware of cognitive decline. Front. Aging Neurosci. 2017, 9, 34. [Google Scholar] [CrossRef]
- Olsen, R.K.; Yeung, L.K.; Noly-Gandon, A.; D’Angelo, M.C.; Kacollja, A.; Smith, V.M.; Ryan, J.D.; Barense, M.D. Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiol. Aging 2017, 57, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Spaniol, J.; Davidson, P.S.R.; Kim, A.S.N.; Han, H.; Moscovitch, M.; Grady, C.L. Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia 2009, 47, 1765–1779. [Google Scholar] [CrossRef]
- Rugg, M.D.; Vilberg, K.L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 2013, 23, 255–260. [Google Scholar] [CrossRef]
- Schöll, M.; Lockhart, S.N.; Schonhaut, D.R.; O’Neil, J.P.; Janabi, M.; Ossenkoppele, R.; Baker, S.L.; Vogel, J.W.; Faria, J.; Schwimmer, H.D.; et al. PET Imaging of Tau Deposition in the Aging. Hum. Brain Neuron 2016, 89, 971–982. [Google Scholar] [CrossRef]
- Maass, A.; Lockhart, S.N.; Harrison, T.M.; Bell, R.K.; Mellinger, T.; Swinnerton, K.; Baker, S.L.; Rabinovici, G.D.; Jagust, W.J. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging. J. Neurosci. 2018, 38, 530–543. [Google Scholar] [CrossRef]
- Rizzolo, L.; Narbutas, J.; Van Egroo, M.; Chylinski, D.; Besson, G.; Baillet, M.; Ali Bahri, M.; Salmon, E.; Maquet, P.; Vandewalle, G.; et al. Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain Cogn. 2021, 148, 105680. [Google Scholar] [CrossRef] [PubMed]
- Craik, F.I.M.; McDowd, J.M. Age differences in recall and recognition. J. Exp. Psychol. Learn. Mem. Cogn. 1987, 13, 474–479. [Google Scholar] [CrossRef]
- Holroyd, C.B.; Ribas-Fernandes, J.J.F.; Shahnazian, D.; Silvetti, M.; Verguts, T. Human midcingulate cortex encodes distributed representations of task progress. Proc. Natl. Acad. Sci. USA 2018, 115, 6398–6403. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Caltagirone, C.; Carlesimo, G.A. Prospective memory functioning in individuals with Parkinson’s disease: A systematic review. Clin. Neuropsychol. 2018, 32, 937–959. [Google Scholar] [CrossRef]
- Oh, A.; Duerden, E.G.; Pang, E.W. The role of the insula in speech andlanguage processing. Brain Lang. 2014, 135, 96–103. [Google Scholar] [CrossRef]
- Scalici, F.; Caltagirone, C.; Carlesimo, G.A. The contribution of different prefrontal cortex regions to recollection and familiarity: A review of fMRI data. Neurosci. Biobehav. Rev. 2017, 83, 240–251. [Google Scholar] [CrossRef]
- Yesavag, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1983, 17, 37–49. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging 1999, 11, 367–372. [Google Scholar] [CrossRef]
- Goodglass, H.; Kaplan, E. The Assessment of Aphasia and Related Disorders; Lea and Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; B’edirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment (MoCA): A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Kounti, F.; Tsolaki, M.; Eleftheriou, M.; Agogiatou, C.; Karagiozi, K.; Bakoglidou, E. Administration of Montreal Cognitive Assessment (MoCA) test in Greek healthy elderly, patients with Mild Cognitive Impairment and patients with Dementia. In Proceedings of the 9th European Conference on Psychological Assessment and 2th International Conference of the Psychological Society of Northern Greece, Thessaloniki, Greece, 3–6 May 2007; pp. 155–156. [Google Scholar]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative data for the Montreal Cognitive Assessment in Greek older adults with subjective cognitive decline, mild cognitive impairment and dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Hanley, R.J.; Davies AD, M.; Downes, J.J.; Mayes, A.R. Impaired recall of verbal material following rupture and repair of an anterior communicating artery aneurysm. Cogn. Neuropsychol. 1994, 11, 543–578. [Google Scholar] [CrossRef]
- Arampatzi, X. Episodic Memory and the Development of Norms to the Greek Population for the Battery «Doors and People»: A Test of Visual and Verbal Recall and Recognition. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2012. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: London, UK, 2013. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: New York, NY, USA, 1961. [Google Scholar]
- Diniz, B.S.; Seitz-Holland, J.; Sehgal, R.; Kasamoto, J.; Higgins-Chen, A.T.; Lenze, E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology with Geriatric Mental Health Research. Am. J. Geriatr. Psychiatry 2014, 32, 1–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeremy, C.; Biesanz, C.F.; Savalei, F.; Savalei, V. Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects. Multivar. Behav. Res. 2010, 45, 661–701. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; Version 24.0. Released; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Sarazin, M.; Berr, C.; De Rotrou, J.; Fabrigoule, C.; Pasquier, F.; Legrain, S.; Michel, B.; Puel, M.; Volteau, M.; Touchon, J.; et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology 2008, 69, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017, 8, 1214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braak, H.; Del Tredici, K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015, 138 Pt 10, 2814–2833. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef]
- Arfanakis, K.; Evia, A.M.; Leurgans, S.E.; Cardoso, L.; Kulkarni, A.; Alqam, N.; Lopes, L.F.; Vieira, D.; Bennett, D.A.; Schneider, J.A. Neuropathologic Correlates of White Matter Hyperintensities in a Community-Based Cohort of Older Adults. J. Alzheimer’s Dis. 2020, 73, 333–345. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Valdés Hernández, M.C.; Muñoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 2015, 4, 001140. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, P.C.; Henson, R.N. Frontal lobes and human memory: Insights from functional neuroimaging. Brain 2001, 124 Pt 5, 849–881. [Google Scholar] [CrossRef] [PubMed]
- Grönholm-Nyman, P.; Rinne, J.O.; Laine, M. Learning and forgetting new names and objects in MCI and AD. Neuropsychologia 2010, 48, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Gronholm, P.; Rinne, J.O.; Vorobyev, V.A.; Laine, M. Neural correlates of naming newly learned objects in MCI. Neuropsychologia 2007, 45, 2355–2368. [Google Scholar] [CrossRef]
- Jefferson, A.L.; Hohman, T.J.; Liu, D.; Haj-Hassan, S.; Gifford, K.A.; Benson, E.M.; Skinner, J.S.; Lu, Z.; Sparling, J.; Sumner, E.C.; et al. Adverse vascular risk is related to cognitive decline in older adults. J. Alzheimer’s Dis. 2015, 44, 1361–1373. [Google Scholar] [CrossRef]
- Schedlbauer, A.M.; Copara, M.S.; Watrous, A.J.; Ekstrom, A.D. Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Sci. Rep. 2014, 4, 6431. [Google Scholar] [CrossRef] [PubMed]
- Carlesimo, G.A.; Lombardi, M.G.; Caltagirone, C.; Barban, F. Recollection and familiarity in the human thalamus. Neurosci. Biobehav. Rev. 2015, 54, 18–28. [Google Scholar] [CrossRef]
- Yonelinas, A.P.; Otten, L.J.; Shaw, K.N.; Rugg, M.D. Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci. 2005, 25, 3002–3008. [Google Scholar] [CrossRef]
- Frithsen, A.; Miller, M.B. The posterior parietal cortex: Comparing remember/know and source memory tests of recollection and familiarity. Neuropsychologia 2014, 61, 31–44. [Google Scholar] [CrossRef]
- Horn, M.; Jardri, R.; D’Hondt, F.; Vaiva, G.; Thomas, P.; Pins, D. The multiple neural networks of familiarity: A meta-analysis of functional imaging studies. Cogn. Affect. Behav. Neurosci. 2016, 16, 176–190. [Google Scholar] [CrossRef]
- Skinner, E.I.; Fernandes, M.A. Neural correlates of recollection and familiarity: A review of neuroimaging and patient data. Neuropsychologia 2007, 45, 2163–2179. [Google Scholar] [CrossRef] [PubMed]
- Vilberg, K.L.; Rugg, M.D. Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia 2008, 46, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage 2010, 50, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R., Jr.; Kreiter, K.; Zhu, J.; Russo, B. A spatio-temporal comparison of semantic and episodic cued recall and recognition using event-related brain potentials. Brain Res. Cogn. 1998, 7, 119–136. [Google Scholar] [CrossRef] [PubMed]
Groups | MCI (n = 44) | VRF (n = 41) | Healthy Controls (n = 24) |
---|---|---|---|
Mean Age | 70.2 (S.D. = 7) ** | 68.6 (S.D. = 7) ** | 54.2 (S.D. = 3) ** |
Mean of Education Years | 11.4 (S.D. = 3) | 10.1 (S.D. = 4) * | 13 (S.D. = 3) * |
Men/Women | 9/35 | 9/32 | 6/18 |
Verbal Recall | Verbal Recognition | Visual Recall | Visual Recognition | Age | Education | |
---|---|---|---|---|---|---|
Diagnosis | 0.569 ** | 0.349 ** | 0.330 ** | 0.227 | −0.792 ** | 0.318 ** |
Education | 0.433 ** | 0.482 ** | 0.416 ** | 0.355 * | −0.628 ** | |
Age | −0.598 ** | −0.512 ** | −0.459 ** | −0.386 ** |
Verbal Recall | Verbal Recognition | Visual Recall | Visual Recognition | Age | |
---|---|---|---|---|---|
Diagnosis | 0.685 ** | 0.361 ** | 0.498 ** | 0.237 | −0.798 ** |
Age | −0.670 ** | −0.383 ** | −0.486 ** | −0.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsentidou, G.; Moraitou, D.; Masoura, E.; Metallidou, P.; Papadopoulos, E.; Papaliagkas, V.; Tsolaki, M. Information Recognition and Recall in Older Adults Bearing Vascular Risk Factors with or without Diagnosis of Mild Cognitive Impairment. J. Dement. Alzheimer's Dis. 2024, 1, 72-86. https://doi.org/10.3390/jdad1010005
Tsentidou G, Moraitou D, Masoura E, Metallidou P, Papadopoulos E, Papaliagkas V, Tsolaki M. Information Recognition and Recall in Older Adults Bearing Vascular Risk Factors with or without Diagnosis of Mild Cognitive Impairment. Journal of Dementia and Alzheimer's Disease. 2024; 1(1):72-86. https://doi.org/10.3390/jdad1010005
Chicago/Turabian StyleTsentidou, Glykeria, Despina Moraitou, Elvira Masoura, Panayiota Metallidou, Efstathios Papadopoulos, Vasileios Papaliagkas, and Magda Tsolaki. 2024. "Information Recognition and Recall in Older Adults Bearing Vascular Risk Factors with or without Diagnosis of Mild Cognitive Impairment" Journal of Dementia and Alzheimer's Disease 1, no. 1: 72-86. https://doi.org/10.3390/jdad1010005
APA StyleTsentidou, G., Moraitou, D., Masoura, E., Metallidou, P., Papadopoulos, E., Papaliagkas, V., & Tsolaki, M. (2024). Information Recognition and Recall in Older Adults Bearing Vascular Risk Factors with or without Diagnosis of Mild Cognitive Impairment. Journal of Dementia and Alzheimer's Disease, 1(1), 72-86. https://doi.org/10.3390/jdad1010005