Exploration of Forest Resources by Both Humans and Butterflies—A Case Study on Utilization of Medicinal Plants as Larval Resource by Nymphalinae Butterflies †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Protocol
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Carlsson, M.A.; Schäpers, A.; Nässel, D.R.; Janz, N. Organization of the olfactory system of Nymphalidae butterflies. Chem. Senses 2013, 38, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Xu, W. How do moth and butterfly taste?—Molecular basis of gustatory receptors in Lepidoptera. Insect Sci. 2020, 27, 1148–1157. [Google Scholar] [CrossRef]
- Janz, N.; Nylin, S. The oscillation hypothesis of host plant-range and speciation. In Speciation, Specialization and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University of California Press: Berkeley, CA, USA, 2008; pp. 203–215. [Google Scholar]
- Janz, N.; Nyblom, K.; Nylin, S. Evolutionary dynamics of host-plant specialization: A case study of the tribe Nymphalini. Evolution 2001, 55, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Nylin, S.; Wahlberg, N. Does plasticity drive speciation? Host-plant shifts and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae) during the tertiary. Biol. J. Linn. Soc. 2008, 94, 115–130. [Google Scholar] [CrossRef]
- Haribal, M. The Butterflies of Sikkim Himalaya and Their Natural History; Sikkim Natural Conservation Foundation: Gangtok, India, 1992; p. 217. [Google Scholar]
- Igarashi, S.; Fukuda, H. The Life Histories of Asian Butterflies; Tokai University Press: Tokyo, Japan, 1997; Volume 1, p. 550. [Google Scholar]
- Kehimkar, I. The Book of Indian Butterflies; Bombay Natural History Society; Oxford University Press: New Delhi, India, 2008; p. xvi + 497. [Google Scholar]
- Trotter, R.T.; Logan, M.H. Informant consensus: A new approach for identifying potentially effective medicinal plants. In Plants in Indigenous Medicine and Diet; Etkin, N.L., Ed.; Redgrave Publishing Company: Bedford Hill, NY, USA, 1986; pp. 91–112. [Google Scholar]
- Friedman, J.; Yaniva, Z.; Dafnib, A.; Palewitch, D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J. Ethnopharmacol. 1986, 16, 275–287. [Google Scholar] [CrossRef]
- Tardio, J.; Pardo-de-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of southern Cantabria (Northern Spain). Econ. Bot. 2008, 62, 24–39. [Google Scholar] [CrossRef]
- García-Barros, E.; Fartmann, T. Butterfly oviposition: Sites, behaviour and modes. In Ecology of Butterflies in Europe; Settele, J., Shreeve, T., Konvička, M., Van Dyck, H., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 29–42. [Google Scholar]
- Asgarpanah, J.; Mohajerani, R. Phytochemistry and pharmacologic properties of Urtica dioica L. J. Med. Plants Res. 2012, 6, 5714–5719. [Google Scholar]
- Sethiya, N.K.; Ahmed, N.M.; Shekh, R.M.; Kumar, V.; Singh, P.K.; Kumar, V. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: An overview. J. Integr. Med. 2018, 16, 299–311. [Google Scholar] [CrossRef]
- Abiri, R.; Silva, A.L.M.; de Mesquita, L.S.S.; de Mesquita, J.W.C.; Atabaki, N.; de Almeida, E.B., Jr.; Shaharuddin, N.A.; Malik, S. Towards a better understanding of Artemisia vulgaris: Botany, phytochemistry, pharmacological and biotechnological potential. Food Res. Int. 2018, 109, 403–415. [Google Scholar] [CrossRef]
- Naseem, N.; Khaliq, T.; Jan, S.; Nabi, S.; Sultan, P.; Hassan, Q.P.; Mir, F.A. An overview on pharmacological significance, phytochemical potential, traditional importance and conservation strategies of Dioscorea deltoidea: A high valued endangered medicinal plant. Heliyon 2024, 10, e31245. [Google Scholar] [CrossRef]
- Johnson, K.; Narasimhan, G.; Krishnan, C. Mimosa pudica Linn.-a shyness princess: A review of its plant movement, active constituents, uses and pharmacological activity. Int. J. Pharm. Sci. Res. 2014, 5, 5104–5118. [Google Scholar]
- Syed, S.; Fatima, N.; Kabeer, G. Portulaca oleracea L.: A mini review on phytochemistry and pharmacology. Int. J. Biol. Biotechnol. 2016, 13, 637–641. [Google Scholar]
- Zhu, X.; Xu, Y.; Sun, D.; Li, H.; Chen, L. The genus Strobilanthes: Phytochemistry and pharmacology. TMR Modern Herb. Med. 2022, 5, 15. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, H.L. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef]
- Xi, O.; Guo, W.; Hu, H. Analysis of genes associated with feeding preference and detoxification in various developmental stages of Aglais urticae. Insects 2024, 15, 30. [Google Scholar] [CrossRef]
- Jia, Z.Q.; Liu, D.; Peng, Y.C.; Han, Z.J.; Zhao, C.Q.; Tang, T. Identification of transcriptome and fluralaner responsive genes in the common cutworm Spodoptera litura Fabricius, based on RNA-seq. BMC Genom. 2020, 21, 120. [Google Scholar] [CrossRef]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Mitter, C.; Farrel, B.; Wiegmann, B. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification? Am. Nat. 1988, 132, 107–128. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Murphy, D.D. Plant chemistry and host range in insect herbivores. Ecology 1988, 69, 908–909. [Google Scholar] [CrossRef]
- Ward, L.K.; Spalding, D.F. Phytophagous British insects and mites and their food-plant families: Total numbers and polyphagy. Biol. J. Linn. Soc. 1993, 49, 257–276. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; Jermy, T.; van Loon, J.J.A. Incests and flowers: The beauty of mutualism. In Insect-Plant Biology; Schoonhoven, L.M., Jermy, T., van Loon, J.J.A., Eds.; Chapman & Hall: London, UK, 1998; pp. 315–342. [Google Scholar]
- Hern, A.; Edwards, G.; Mckinlay, R. A review of the pre-oviposition behaviour of the small cabbage white butterfly, Pieris rapae (Lepidoptera: Pieridae). Ann. Appl. Biol. 1996, 128, 349–371. [Google Scholar] [CrossRef]
- Hooks, C.; Johnson, M. Broccoli growth parameters and level of head infestations in simple and mixed plantings: Impact of increased flora diversification. Ann. Appl. Biol. 2001, 138, 269–280. [Google Scholar] [CrossRef]
- Nishida, R. Chemical ecology of insect-plant interactions: Ecological significance of plant secondary metabolites. Biosci. Biotechnol. Biochem. 2014, 78, 1–13. [Google Scholar] [CrossRef]
- Wiklund, C. Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 1984, 63, 23–29. [Google Scholar] [CrossRef]
- Dyer, L.A.; Letourneau, D.K.; Dodson, C.D.; Tobler, M.A.; Stireman, J.O.; Hsu, A. Ecological causes and consequences of variation in defensive chemistry of a neotropical shrub. Ecology 2004, 85, 2795–2803. [Google Scholar] [CrossRef]
- Lankau, R.A. Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol. 2007, 175, 176–184. [Google Scholar] [CrossRef]
- Richards, L.A.; Dyer, L.A.; Forister, M.L.; Smilanich, A.M.; Dodson, C.D.; Leonard, M.D.; Jeffrey, C.S. Phytochemical diversity drives plant-insect community diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 10973–10978. [Google Scholar] [CrossRef]
- Lampert, E.C.; Bowers, M.D. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J. Chem. Ecol. 2010, 36, 1101–1104. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Noiarsa, P.; Ruchirawat, S.; Kasai, R.; Otsuka, H. Phenylethanoid and iridoid glycosides from the Thai medicinal plant, Barleria strigosa. Chem. Pharm. Bull. 2004, 52, 612–614. [Google Scholar] [CrossRef]
- Keomanykham, O.; Lien, T.T.B.; Anh, H.T.; Duyen, T.M.; Lien, N.T.H.; Nhiem, N.X.; Thang, T.D.; Hoang, V.D.; Quang, D.N. Prionitosides A and B-two iridoid glycosides with anti-inflammatory and cytotoxic activities from Barleria prionitis. Phytochem. Lett. 2024, 60, 10–13. [Google Scholar] [CrossRef]
Plant Species | Medicinal Benefits as Documented During Interview |
---|---|
Urticaceae Urtica dioica | Possesses analgesic, anti-inflammatory, antiviral, anticancer, anti-Alzheimer and anti-oxidant properties. Also effective against jaundice, digestive problems, nephritis, rheumatism and arthritis |
Urtica parviflora | Used in the treatment of goitre, cough, stomach pain, ulcer, allergies, alopecia and fever |
Boehmeria penduliflora | Possesses anti-diabetic, antimicrobial, anti-oxidant, anti-hepatitis and anti-inflammatory properties |
Boehmeria diffusa | Known for its anti-diabetic, antimicrobial, anticancer, anti-hepatitis and anti-bacterial properties |
Boehmeria glomerulifera | Recognized for its anti-inflammatory, anti-allergic and anti-colitis role |
Elatostema sessile | Possesses anti-depressant, analgesic, neurological, anti-bacterial and anti-arthritic functions |
Elatostema cuneatum | Known for its anti-depressant, neurological, anti-bacterial and anti-cough properties |
Girardinia heterophylla | Recognized for its anti-inflammatory, anticancer, anti-microbial and anti-diabetic properties |
Debregeasia velutina | Cures dysentery, arthritis, skin ulcers, digestive disorders and ulcers |
Debregeasia wallichiana | Prevents digestive disorders and respiratory problems |
Parietaria judaica | Used in the treatment of cough, allergies, digestive disorders and fever |
Poikilospermum suaveolens | Known for its anti-depressant, neurological, anti-cough and anti-colitic properties |
Laportea interrupta | Possess anti-diabetic, antimicrobial, anti-hepatitis and anti-inflammatory properties |
Acanthaceae Justicia procumbens | Cures diarrhea, dysentery, vomiting, and chronic bronchitis, and is antipyretic, antispasmodic and anti-asthmatic |
Justicia japonica | Cures fever, cough, colitis and gastritis |
Justicia adhatoda | Cures respiratory and digestive problems |
Hygrophila auriculata | Effective against fever, diarrhea, cough, pain, neurological disorders, snakebites, diabetes and tuberculosis |
Barleria strigosa | Provides relief from toothache and gastric problems |
Barleria cristata | Has analgesic, antiseptic, immunological and anti-asthmatic properties |
Barleria prionitis | Cures respiratory, fever, joint pain, burns, urinary and paralytic problems |
Asystasia macrocarpa | Provides relief from digestive disorders, fever and cough |
Nelsonia campestris | Possesses anti-bacterial, anti-oxidant, anti-inflammatory, anti-diabetic and analgesic properties |
Strobilanthes capitatus | Known for its anti-diabetic, antimicrobial, anticancer, wound healing, anti-ulcerogenic, anti-rheumatic and anti-inflammatory properties |
Asteraceae Artemisia vulgaris | Recognized for its antiseptic, antispasmodic, anti-flatulent, anti-oxidant, anti-cough and hepato-protective properties |
Gnaphalium affine | Possesses anti-hypouricemic, antifungal and anti-inflammatory properties. |
Dioscoreaceae Dioscorea deltoidea | Recognized for anti-inflammatory, anti-bacterial, anti-oxidant and hepato-protective properties |
Malvaceae Sida rhombifolia | Has anti-oxidant, anti-cough, anti-analgesic and wound healing properties. |
Abelmoschus manihot | Provides relief from respiratory and digestive problems |
Hibiscus scandens | Cures influenza, fever, cough and stomach pain |
Portulaceae Portulaca oleracea | Possesses anticancer, anti-diabetic, neuro-protective, hepato-protective, nephro-protective, wormicidal and insecticidal properties. |
Melastomataceae Osbeckia muralis | Cures respiratory, colitic and digestive problems |
Tiliaceae Corchorus capsularis | Has cardiac, anti-inflammatory and immuno-protective functions |
Fabaceae Erythrina variegata | Cures problems related with female infertility, gonorrhea and infection |
Mimosa pudica | Has anti-toxic, anti-cough, anti-inflammatory and wound healing properties. Effective against flatulence, diarrhea, fever and chest infection |
Smilacaceae Smilax rigida | Has anti-infective, anti-inflammatory and anti-colitis properties |
Plant Species | Uv | FL |
---|---|---|
Urtica dioica | 0.87 | 84℅ |
Urtica parviflora | 0.74 | 54℅ |
Girardinia heterophylla | 0.66 | 62℅ |
Elatostema cuneatum | 0.22 | 25℅ |
Elatostema sessile | 0.21 | 26℅ |
Laportea interrupta | 0.61 | 55℅ |
Debreagesia velutina | 0.82 | 87℅ |
Debreagesia wallichiana | 0.77 | 79℅ |
Boehmeria glomerulifera | 0.80 | 82℅ |
Boehmeria penduliflora | 0.62 | 66℅ |
Boehmeria diffusa | 0.42 | 52℅ |
Parietaria judaica | 0.35 | 63℅ |
Poikilospermum suaveolens | 0.44 | 49℅ |
Hygrophila auriculata | 0.89 | 88℅ |
Justicia adhatoda | 0.46 | 45℅ |
Justicia procumbens | 0.44 | 66℅ |
Barleria cristata | 0.28 | 72℅ |
Barleria stigosa | 0.46 | 64℅ |
Barleria prionitis | 0.17 | 42℅ |
Nelsonia campestris | 0.54 | 35℅ |
Asystasia macrocarpa | 0.42 | 31℅ |
Strobilanthes capitatus | 0.69 | 16℅ |
Justicia japonica | 0.66 | 32℅ |
Sida rhombifolia | 0.72 | 89℅ |
Hibiscus rosa chinensis | 0.61 | 34℅ |
Abelmoschus esculenta | 0.53 | 44℅ |
Portulaca oleracea | 0.66 | 21℅ |
Dioscorea deltoides | 0.81 | 100℅ |
Artemesia vulgaris | 0.77 | 100℅ |
Corchorus capsularis | 0.42 | 35℅ |
Gnaphalium affine | 0.52 | 40℅ |
Mimosa pudica | 0.78 | 100℅ |
Smilax glabra | 0.26 | 75℅ |
Erythrina vulgaris | 0.34 | 56℅ |
Osbeckia muralis | 0.50 | 51℅ |
Butterfly Species | Larval Host Plant Species |
---|---|
Araschnia prorsoides (Blanchard) | Urtica dioica (Urticaceae) |
Symbrenthia niphanda Moore | Boehmeria penduliflora (Urticaceae) |
Symbrenthia hypselis (Godart) | Debregeasia velutina, Elatostema sessile (Urtricaceae) |
Symbrenthia hippoclus (Cramer) | Debregeasia velutina, D. wallichiana (Urticaceae) |
Vanessa indica (Herbst) | Boehmeria diffusa, B. glomerulifera, B. penduliflora, Urtica dioica (Urticaceae) |
Limenitis trivena Moore | Boehmeria penduliflora, Girardinia heterophylla (Urticaceae) |
Vanessa cardui (Linnaeus) | Artemisia vulgaris, Gnaphalium affine (Asteraceae); Boehmeria diffusa, Girardinia heterophylla (Urticaceae) |
Aglais cashmiriensis (Kollar) | Urtica dioica, U. parviflora, Boehmeria diffusa (Urticaceae) |
Aglais urticae (Linnaeus) | Urtica parviflora (Urticaceae) |
Kaniska canace (Linnaeus) | Dioscorea deltoidea (Dioscoreaceae); Smilax rigida (Smilacaceae) |
Polygonia egea (Cramer) | Parietaria judaica (Urticaceae) |
Rhinopalpa polynice (Cramer) | Poikilospermum suaveolens (Urticaceae) |
Junonia orithiya (Linnaeus) | Hygrophila auriculata, Justicia procumbens (Acanthaceae); Sida rhombifolia (Malvaceae); Mimosa pudica (Fabaceae) |
Junonia hierta (Fabricius) | Barleria strigosa, Hygrophila auriculata (Acanthaceae) |
Junonia atlites (Linnaeus) | Barleria strigosa, Hygrophila auriculata (Acanthaceae) |
Junonia iphita (Cramer) | Justicia adhatoda, J. japonica, Hygrophila auriculata (Acanthaceae) |
Junonia lemonias (Linnaeus) | Barleria prionitis, Hygrophila auriculata, Justicia procumbens, Nelsonia campestris (Acanthaceae); Sida rhombifolia (Malvaceae); Corchorus capsularis (Tiliaceae) |
Junonia almana (Linnaeus) | Barleria strigosa, Hygrophila auriculata (Acanthaceae); Osbeckia muralis (Melastomataceae) |
Hypolimnas bolina (Linnaeus) | Sida rhombifolia, Hibiscus scandens (Malvaceae); Potrulacea oleracea (Portulaceae); Elatostema cuneatum, Laportea interrupta (Urticaceae) |
Hypolimnas misippus (Linnaeus) | Asystasia macrocarpa, Barleria cristata (Acanthaceae); Abelmoschus manihot, Hibiscus scandens (Malvaceae); Portulaca oleracea (Portulaceae) |
Kallima inachus (Boisduval) | Strobilanthes capitatus (Acanthaceae) |
Doleschallia bisaltide (Cramer) | Urtica dioica (Urticaceae); Erythrina variegata (Fabaceae) |
Kallima alompra Moore | Asystasia macrocarpa (Acanthaceae) |
Butterfly Species | HPS | Pi |
---|---|---|
Araschnia prorsoides (Blanchard) | 1S | 1.000 |
Symbrenthia niphanda Moore | 1S | 1.000 |
Symbrenthia hypselis (Godart) | 1F | 2.449 |
Symbrenthia hippoclus (Cramer) | 1G | 1.414 |
Vanessa indica (Herbst) | 1F | 2.449 |
Limenitis trivena Moore | 1F | 2.449 |
Vanessa cardui (Linnaeus) | 2F | 4.472 |
Aglais cashmiriensis (Kollar) | 1F | 2.449 |
Aglais urticae (Linnaeus) | 1S | 1.000 |
Kaniska canace (Linnaeus) | 2F | 3.162 |
Polygonia egea (Cramer) | 1S | 1.000 |
Rhinopalpa polynice (Cramer) | 1S | 1.000 |
Junonia orithiya (Linnaeus) | 3F | 4.475 |
Junonia hierta (Fabricius) | 1F | 2.449 |
Junonia atlites (Linnaeus) | 1F | 2.449 |
Junonia iphita (Cramer) | 1F | 2.449 |
Junonia lemonias (Linnaeus) | 3F | 5.477 |
Junonia almana (Linnaeus) | 2F | 3.873 |
Hypolimnas bolina (Linnaeus) | 3F | 5.000 |
Hypolimnas misippus (Linnaeus) | 3F | 5.000 |
Kallima inachus (Boisduval) | 1S | 1.000 |
Doleschallia bisaltide (Cramer) | 2F | 3.162 |
Kallima alompra Moore | 1S | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, P. Exploration of Forest Resources by Both Humans and Butterflies—A Case Study on Utilization of Medicinal Plants as Larval Resource by Nymphalinae Butterflies. Environ. Earth Sci. Proc. 2024, 31, 17. https://doi.org/10.3390/eesp2024031017
Sengupta P. Exploration of Forest Resources by Both Humans and Butterflies—A Case Study on Utilization of Medicinal Plants as Larval Resource by Nymphalinae Butterflies. Environmental and Earth Sciences Proceedings. 2024; 31(1):17. https://doi.org/10.3390/eesp2024031017
Chicago/Turabian StyleSengupta, Panchali. 2024. "Exploration of Forest Resources by Both Humans and Butterflies—A Case Study on Utilization of Medicinal Plants as Larval Resource by Nymphalinae Butterflies" Environmental and Earth Sciences Proceedings 31, no. 1: 17. https://doi.org/10.3390/eesp2024031017
APA StyleSengupta, P. (2024). Exploration of Forest Resources by Both Humans and Butterflies—A Case Study on Utilization of Medicinal Plants as Larval Resource by Nymphalinae Butterflies. Environmental and Earth Sciences Proceedings, 31(1), 17. https://doi.org/10.3390/eesp2024031017