Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Physical Activity Assessment
2.3. Body Adiposity Assessment
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). World Report on Ageing and Health; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Doak, C.M.; Wijnhoven, T.M.A.; Schokker, D.F.; Visscher, T.L.S.; Seidell, J.C. Age standardization in mapping adult overweight and obesity trends in the WHO European Region. Obes. Rev. 2012, 13, 174–191. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Franklin, B.A.; Brinks, J.; Sternburgh, L. Move more, sit less: A first-line, public health preventive strategy? Prev. Cardiol. 2010, 13, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Howard, B.; Healy, G.N.; Owen, N. Too much sitting-A health hazard. Diabetes Res. Clin. Pract. 2012, 97, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Stanford, T.E.; Martin-Fernández, J.-A.; Pedišić, Ž.; Maher, C.A.; Lewis, L.K.; Hron, K.; Katzmarzyk, P.T.; Chaput, J.-P.; Fogelholm, M.; et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pedišić, Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research-The focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology 2014, 46, 135–146. [Google Scholar]
- Pedišić, Ž.; Dumuid, D.; Olds, T.S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging fied of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology 2017, 49, 252–269. [Google Scholar]
- Chastin, S.F.M.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Lewis, L.K.; Olds, T.S.; Maher, C.; Bondarenko, C.; Norton, L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas 2018, 110, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Tremblay, M.S.; Chastin, S.F.M. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses. BMC Public Health 2017, 17, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumuid, D.; Stanford, T.E.; Pedišić, Ž.; Maher, C.; Lewis, L.K.; Martín-Fernández, J.A.; Katzmarzyk, P.T.; Chaput, J.P.; Fogelholm, M.; Standage, M.; et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: A compositional data analysis approach. BMC Public Health 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Barreira, T.; Broyles, S.; Chaput, J.P.; Fogelholm, M.; Hu, G.; Kuriyan, R.; et al. The adiposity of children is associated with their lifestyle behaviours: A cluster analysis of school-aged children from 12 nations. Pediatr. Obes. 2018, 13, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Recio-Rodríguez, J.I.; Sanchez-Aguadero, N.; Rodríguez-Sánchez, E.; Martinez-Vizcaino, V.; Martin-Cantera, C.; Patino-Alonso, M.C.; Maderuelo-Fernandez, J.A.; Gómez-Marcos, M.A.; Garcia-Ortiz, L. Physical activity and adiposity among older adults of the EVIDENT study. J. Aging Phys. Act. 2017, 25, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Wyatt, H. Role of physical activity in preventing and treating obesity. J. Appl. Physiol. 2005, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Dumuid, D.; Taylor, S.; Curry, W.; McGrane, B.; Stratton, G.; Maher, C.; Olds, T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Tremblay, M.S.; Chaput, J.; Chastin, S.F.M. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses 1. Appl. Physiol. Nutr. Metab. 2016, 302, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.; Berrigan, D.; Dodd, K.; Mâsse, L.; Tilert, T.; Mcdowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Camhi, S.; Troiano, R. A catalog of rules, variables, and definitions applied to accelerometer data in the national health and nutrition examination survey, 2003–2006. Prev. Chronic Dis. 2012, 9, 1–16. [Google Scholar] [CrossRef]
- Zajac-Gawlak, I.; Pośpiech, D.; Kroemeke, A.; Mossakowska, M.; Gába, A.; Pelclová, J.; Přidalová, M.; Kłapcińska, B. Physical activity, body composition and general health status of physically active students of the University of the Third Age (U3A). Arch. Gerontol. Geriatr. 2016, 64, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zając-Gawlak, I.; Kłapcińska, B.; Kroemeke, A.; Pośpiech, D.; Pelclová, J.; Přidalová, M. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology 2017, 18, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Pelclová, J.; Gába, A.; Tlučáková, L.; PoŚpiech, D. Association between physical activity (PA) guidelines and body composition variables in middle-aged and older women. Arch. Gerontol. Geriatr. 2012, 55, e14–e20. [Google Scholar] [CrossRef] [PubMed]
- Gába, A.; Kapuš, O.; Pelclová, J.; Riegerová, J. The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Arch. Gerontol. Geriatr. 2012, 54, e315–e321. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Gába, A.; Přidalová, M. Diagnostic performance of body mass index to identify adiposity in women. Eur. J. Clin. Nutr. 2016, 70, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Gába, A.; Kapuš, O.; Cuberek, R.; Botek, M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2014, 28, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009, 8, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.K.; Rai, M.; Rehkopf, D.H.; Abrams, B. Educational attainment and obesity: A systematic review. Obes. Rev. 2013, 14, 989–1005. [Google Scholar] [CrossRef] [PubMed]
- Pikhart, H.; Bobak, M.; Malyutina, S.; Pajak, A.; Kubínová, R.; Marmot, M.; Kubínová, R. Obesity and education in three countries of the central and Eastern Europe: The HAPIEE study. Cent. Eur. J. Public Health 2007, 15, 140–142. [Google Scholar] [PubMed]
- Imai, K.; Gregg, E.W.; Chen, Y.J.; Zhang, P.; Rekeneire, N.; Williamson, D.F. The association of BMI with functional status and self-rated health in US adults. Obesity 2008, 16, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Clair, C.; Chiolero, A.; Faeh, D.; Cornuz, J.; Marques-Vidal, P.; Paccaud, F.; Mooser, V.; Waeber, G.; Vollenweider, P. Dose-dependent positive association between cigarette smoking, abdominal obesity and body fat: Cross-sectional data from a population-based survey. BMC Public Health 2011, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Health of Australian Goverment. Australia’s Physical Activity and Sedentary Behaviour Guidelines for Adults (18–64 Years). 2014. Available online: http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines (accessed on 20 January 2018).
- World Health Organization. Global Recommendations on Physical Activity for Health; World Helath Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Larsen, R.N.; Kingwell, B.A.; Sethi, P.; Cerin, E.; Owen, N.; Dunstan, D.W. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 976–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buman, M.P.; Hekler, E.B.; Haskell, W.L.; Pruitt, L.; Conway, T.L.; Cain, K.L.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; King, A.C. Objective light-intensity physical activity associations with rated health in older adults. Am. J. Epidemiol. 2010, 172, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int. J. Behav. Nutr. Phys. Act. 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Guidry, M.A.; Blanchard, B.E.; Thompson, P.D.; Maresh, C.M.; Seip, R.L.; Taylor, A.L.; Pescatello, L.S. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am. Heart J. 2006, 151, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sabia, S.; Cogranne, P.; van Hees, V.T.; Bell, J.A.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A. Physical activity and adiposity markers at older ages: Accelerometer Vs questionnaire data. J. Am. Med. Dir. Assoc. 2015, 16, 438.e7–438.e13. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | |
---|---|---|
Age and other covariates | ||
Age (years) | 66.6 | 6.5 |
Education (years) | 13.1 | 4.8 |
Good health status (n (% of n)) | 238 (76) | |
Smokers (n (% of n)) | 14 (4.5) | |
Anthropometrics | ||
Body height (cm) | 160.9 | 6.5 |
Body weight (kg) | 70.2 | 12.0 |
Body mass index (kg/m2) | 27.1 | 4.4 |
Fat mass percentage (%) | 36.1 | 7.1 |
Activity compositiona | ||
Compositional mean of (SB, LPA, MVPA) in min/16 h | 548.54, 376.38, 35.08 | |
Compositional mean of (SB, LPA, MVPA) in % | 57.14, 39.21, 3.65 | |
Weight status according to BMI, n (% of n) | ||
Normal weight (<25 kg/m2) | 110 (35.0) | |
Overweight (25–29.9 kg/m2) | 133 (42.4) | |
Obesity (≥30 kg/m2) | 71 (22.6) | |
Obesity status according to FM%, n (% of n) | ||
Normal (<35%) | 134 (42.7) | |
Obesity (>35%) | 180 (57.3) |
SB | LIPA | MVPA | |
---|---|---|---|
SB | 0.00 | 0.19 | 0.59 |
LIPA | 0.19 | 0.00 | 0.51 |
MVPA | 0.59 | 0.51 | 0.00 |
BMI | FM% | |||||
---|---|---|---|---|---|---|
β | SE | p | β | SE | p | |
SB | 2.80 | 0.69 | <0.001 | 5.44 | 1.12 | <0.001 |
LIPA | −0.06 | 0.72 | 0.93 | −1.61 | 1.17 | 0.169 |
MVPA | −2.74 | 0.33 | <0.001 | −3.83 | 0.53 | <0.001 |
Shift from SB to MVPA (min) | Predicted BMI (kg/m2) | Predicted FM (%) |
---|---|---|
0 | 28.15 | 38.46 |
5 | 27.83 | 38.00 |
10 | 27.54 | 37.60 |
15 | 27.29 | 37.23 |
20 | 27.05 | 36.89 |
25 | 26.84 | 36.57 |
30 | 26.64 | 36.28 |
Shift from SB to LIPA (min) | Predicted BMI (kg/m2) | Predicted FM (%) |
---|---|---|
0 | 28.15 | 38.46 |
5 | 28.13 | 38.40 |
10 | 28.10 | 38.36 |
15 | 28.08 | 38.29 |
20 | 28.06 | 38.23 |
25 | 28.04 | 38.17 |
30 | 28.01 | 38.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelclová, J.; Štefelová, N.; Hodonská, J.; Dygrýn, J.; Gába, A.; Zając-Gawlak, I. Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women? Int. J. Environ. Res. Public Health 2018, 15, 1444. https://doi.org/10.3390/ijerph15071444
Pelclová J, Štefelová N, Hodonská J, Dygrýn J, Gába A, Zając-Gawlak I. Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women? International Journal of Environmental Research and Public Health. 2018; 15(7):1444. https://doi.org/10.3390/ijerph15071444
Chicago/Turabian StylePelclová, Jana, Nikola Štefelová, Jana Hodonská, Jan Dygrýn, Aleš Gába, and Izabela Zając-Gawlak. 2018. "Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women?" International Journal of Environmental Research and Public Health 15, no. 7: 1444. https://doi.org/10.3390/ijerph15071444