Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxic Screening
2.3. EGFR Assay
2.4. In Silico Screening and Molecular Docking Study into EGFR Binding Site
2.5. Tubulin Polymerization Inhibition Assay
2.6. In Silico Screening and Molecular Docking Study into Tubulin Binding Site
3. Materials and Methods
3.1. General
3.2. Synthesis of 6-Fluoro 2-(4-fluorophenyl)-benzo[d] [1,3] Oxazine-4-one (3)
3.3. Synthesis of 3-Amino-6-fluoro-2-(4-fluorophenyl)quinazolin-4(3H)-one (4)
3.4. Synthesis of Substituted Quinazolinone Bearing Amino Acids (A–H)
3.5. In Vitro Cytotoxic Screening
3.6. EGFR Inhibition Assay
3.7. Tubulin Polymerization Inhibition Assay
3.8. Molecular Docking
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zayed, M.F.; Ahmed, E.A.; Omar, A.M.; Abdelrahim, A.S.; El-Adl, K. Design, synthesis and biological evaluation studies of novel quinazolinone derivatives as anticonvulsant agents. Med. Chem. Res. 2013, 22, 5823–5831. [Google Scholar] [CrossRef]
- Zayed, M.F. New fluorinated quinazolinone derivatives as anticonvulsant agents. J. Taibah Univ. Med. Sci. 2014, 9, 104–109. [Google Scholar] [CrossRef]
- Connolly, J.D.; Cusack, D.; Sullivan, P.T.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005, 61, 10153–10202. [Google Scholar] [CrossRef]
- Pathak, S.R.; Malhotra, V.; Nath, V.R.; Shanker, K. Synthesis and antihypertensive activity of novel quinazolin-4(3H)-one derivatives. Cent. Nerv. Syst. Agents Med. Chem. 2014, 14, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F.; Hassan, M.H. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm. J. 2014, 22, 157–162. [Google Scholar] [CrossRef] [PubMed]
- El-Sharief, M.A.; Ahmed, Z.M.; El-Sharief, M.S. Synthesis, characterization, and derivatization of some novel types of fluorinated mono- and bis-imidazolidineiminothiones with antitumor, antiviral, antibacterial, and antifungal activities. J. Fluor. Chem. 2011, 132, 596–611. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ganguly, S.; Veerasamy, R.; Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem. 2010, 45, 5474–5479. [Google Scholar] [CrossRef] [PubMed]
- Abbas, E.S.; Awadallah, M.F.; Ibrahim, A.; Said, E.G.; Kamel, G.M. New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. Eur. J. Med. Chem. 2012, 53, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Akhtar, M.J.; Haider, M.R. Design and synthesis of quinazoline-3,4-(4H)-diamine endowed with thiazoline moiety as new class for DPP-4 and DPPH inhibitor. Bioorg. Chem. 2017, 71, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Ram, V.R.; Farhanullah, B.K.; Srivastava, A.K. Synthesis and antihyperglycemic activity of suitably functionalized 3H-quinazolin-4-ones. Bioorg. Med. Chem. 2003, 1, 2439–2444. [Google Scholar] [CrossRef]
- Ali, M.M.; Mohamed, A.Y.; El-Bayouki, M.Y.; Basyouni, W.M.; Abbas, S.Y. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities. Eur. J. Med. Chem. 2010, 45, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Al-Rashood, S.T.; Aboldahab, I.A.; Nagi, M.N.; Abouzeid, L.A.; Abdel-Aziz, A.A.; Abdel-Hamide, S.G.; Youssef, K.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem. 2006, 14, 8608–8621. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F.; Hassan, M.H. Design, synthesis and biological evaluation studies of novel quinazoline derivatives as cytotoxic agents. Drug Res. 2013, 63, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaid, A.M.; Abdel-Hamide, S.G.; El-Kashef, H.A.; Abdel-Aziz, A.A.; El-Azab, A.S.; Al-Khamees, H.A.; El-Subbagh, H.I. Substituted quinazolines, part 3. Synthesis, in vitro antitumor activity and molecular modeling study of certain 2-thieno-4(3H)-quinazolinone analogs. Eur. J. Med. Chem. 2009, 44, 2379–2391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, H.; Liu, R.; Liu, J.; Chen, L.; Li, X.; Zhao, L.; Wang, W.; Li, B. Quinazoline-1-deoxynojirimycin hybrids as high active dual inhibitors of EGFR and a-glucosidase. Bioorg. Med. Chem. Lett. 2017, 27, 4309–4313. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F.; Sahar, A.; Ihmaid, S.; Ahmed, H.E.A.; Rateb, H.S.; Ibrahim, S.R.M. Design, synthesis, cytotoxic evaluation and molecular docking of new fluoroquinazolinones as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Int. J. Mol. Sci. 2018, 19, 1731. [Google Scholar] [CrossRef] [PubMed]
- Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; et al. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem. 2014, 57, 4598–4605. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F.; Ahmed, H.E.A.; Ihmaid, S.; Omar, A.M.; Abdelrahim, A.S. Synthesis and screening of some new fluorinated quinazolinone-sulphonamide hybrids as anticancer agents. J. Taibah Univ. Med. Sci. 2015, 10, 333–339. [Google Scholar] [CrossRef]
- Kirk, L.K. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J. Fluor. Chem. 2006, 127, 1013–1029. [Google Scholar] [CrossRef]
- Isanbor, C.; Ohagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem. 2006, 1227, 303–319. [Google Scholar] [CrossRef]
- Layevaa, A.A.; Nosovaa, E.V.; Lipunovaa, G.N.; Tatyana, V.; Trashakhova, A.V.; Charushin, N. A new approach to fluorinated 4(3H)-quinazolinones. J. Fluor. Chem. 2007, 128, 748–754. [Google Scholar] [CrossRef]
- Uifalean, A.; Schneider, S.; Gierok, P.; Ionescu, C.; Iuga, C.A.; Lalk, M. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach. Int. J. Mol. Sci. 2016, 17, 1443. [Google Scholar] [CrossRef] [PubMed]
- Ihmaid, S.; Ahmed, H.E.A.; Zayed, M.F. The design and development of potent small molecules as anticancer agents targeting EGFR TK and tubulin polymerization. Int. J. Mol. Sci. 2018, 19, 408. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, A.E.; Guy, S.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Barker, A.J.; Gibson, K.H. An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002, 62, 5749–5754. [Google Scholar] [PubMed]
- Skoufias, D.A.; Wilson, L. Mechanism of inhibition of microtubule polymerization by colchicine: Inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 1992, 31, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Raffa, D.; Edler, M.C.; Daidone, G.; Maggio, B.; Merikech, M.; Plescia, S.; Schillaci, D.; Bai, R.; Hamel, E. Synthesis, cytotoxicity, and inhibitory effects on tubulin polymerization of a new 3-heterocyclo substituted 2-styrylquinazolinones. Eur. J. Med. Chem. 2004, 39, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Molecular Operating Environment (MOE) Chemical Computing Group. Available online: http://www.chemcomp.com (accessed on 30 February 2013).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are currently not available from the authors. |
Compound | IC50 (µM) | 3rd Position Substitution | |
---|---|---|---|
MCF-7 | MDA-MBA-231 | ||
A | 24.97 ± 1.61 | 16.34 ± 1.21 | Glycine |
B | 68.49 ± 3.27 | 42.93 ± 2.64 | l-alanine |
C | 1.16 ± 0.05 | 3.45 ± 0.21 | l-valine |
D | 11.28 ± 1.25 | 7.49 ± 0.42 | l-isoleucine |
E | 12.44 ± 5.73 | 0.43 ± 0.02 | l-glutamine |
F | 1.93 ± 0.08 | 12.46 ± 5.88 | l-cysteine |
G | 0.44 ± 0.01 | 24.67 ± 1.7 | l-phenylalanine |
H | 1.28 ± 0.03 | 11.96 ± 1.33 | l-proline |
Erlotinib | 1.14 ± 004 | 2.55 ± 0.19 |
Compound | Selectivity Indices | Cell Line | |
---|---|---|---|
S1 | S2 | ||
E | 28.93 ± 0.08 | 0.03 ± 0.11 | MDA-MBA-231 selective |
B | 1.59 ± 0.05 | 0.63 ± 0.23 | |
A | 1.53 ± 0.12 | 0.65 ± 0.05 | |
D | 1.51 ± 0.24 | 0.66 ± 0.17 | |
Erlotinib | 0.45 ± 0.09 | 2.24 ± 0.31 | MCF-7 selective |
C | 0.34 ± 0.18 | 2.98 ± 0.71 | |
F | 0.15 ± 0.17 | 6.46 ± 0.04 | |
H | 0.11 ± 0.23 | 9.34 ± 0.02 | |
G | 0.02 ± 0.07 | 56.07 ± 0.15 |
Compound | IC50 (nM) | Amino Acid at Position 3 | |
---|---|---|---|
MCF-7 | MDA-MBA-231 | ||
G | 163.97 ± 0.07 | - | |
E | - | 545.38 ± 0.04 | |
Erlotinib | 78.04 ± 0.12 | 299 ± 0.35 |
Compound | Score | ΔE (Kcal/mol) |
---|---|---|
A | −5.4 | −9.8 |
B | −4.1 | −8.7 |
C | −6.8 | −12.2 |
D | −7.2 | −11.8 |
E | −15.3 | −23.5 |
F | −6.42 | −10.7 |
G | −11.6 | −17.4 |
H | −6.9 | −10.1 |
Erlotinib | −8.7 | −13.6 |
Compound | Score | ΔE (Kcal/mol) |
---|---|---|
A | –9.6 | –12.4 |
B | –6.8 | –11.5 |
C | –10.4 | –12.5 |
D | –8.1 | –13.2 |
E | –15.4 | –24.7 |
F | –7.2 | –11.2 |
G | –9.1 | –15.3 |
H | –7.2 | –10.5 |
Colchicine | –9.3 | –11.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization. Molecules 2018, 23, 1699. https://doi.org/10.3390/molecules23071699
Zayed MF, Rateb HS, Ahmed S, Khaled OA, Ibrahim SRM. Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization. Molecules. 2018; 23(7):1699. https://doi.org/10.3390/molecules23071699
Chicago/Turabian StyleZayed, Mohamed F., Heba S. Rateb, Sahar Ahmed, Osama A. Khaled, and Sabrin R. M. Ibrahim. 2018. "Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization" Molecules 23, no. 7: 1699. https://doi.org/10.3390/molecules23071699
APA StyleZayed, M. F., Rateb, H. S., Ahmed, S., Khaled, O. A., & Ibrahim, S. R. M. (2018). Quinazolinone-Amino Acid Hybrids as Dual Inhibitors of EGFR Kinase and Tubulin Polymerization. Molecules, 23(7), 1699. https://doi.org/10.3390/molecules23071699