Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative and Quantitative Analysis
2.2. Contents of Five Triterpenoids in Different Tissues
2.3. Verification of the Five Triterpenoids
3. Materials and Methods
3.1. Materials
3.2. Inoculum Preparation and Flask Cultures
3.3. Artificial Cultivation of Fruiting Body
3.4. Extraction of Triterpenoids of W. cocos
3.5. HPLC Analysis
3.6. Standard Samples and the Linear Regression Equation
3.7. LC/MS-MS Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Q.; Liang, X. Food therapy and medical diet therapy of traditional Chinese medicine. Clin. Nutr. Exp. 2018, 18, 1–5. [Google Scholar] [CrossRef]
- Yang, M.; Tao, S.; Guan, S.; Wu, X.; Xu, P.; Guo, D. 3.13-Chinese Traditional Medicine: Comprehensive Natural Products II; Elsevier: Oxford, UK, 2010; pp. 383–477. [Google Scholar]
- Ríos, J.L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011, 77, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, S.P.; Zhang, X.; Yu, X.D.; He, Q.Y.; Wang, B. Study on the multi-marker components quantitative HPLC fingerprint of the compound Chinese medicine Wuwei Changyanning granule. Iran. J. Pharm. Res. 2014, 13, 1191–1201. [Google Scholar] [PubMed]
- Ling, Y.; Chen, M.; Wang, K.; Sun, Z.; Li, Z.; Wu, B.; Huang, C. Systematic screening and characterization of the major bioactive components of Poria cocos and their metabolites in rats by LC-ESI-MS(n). Biomed. Chromatogr. 2012, 26, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, X.W. Two new lanostane triterpenoids from Poria cocos. J. Asian Nat. Prod. Res. 2008, 10, 323–328. [Google Scholar] [PubMed]
- Wang, W.; Dong, H.; Yan, R.; Li, H.; Li, P.; Chen, P.; Wang, Z. Comparative study of lanostane-type triterpene acids in different parts of Poria cocos (Schw.) Wolf by UHPLC–Fourier transform MS and UHPLC-triple quadruple MS. J. Pharm. Biomed. Anal. 2015, 102, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) Wolf by HPLC and HPLC-MS(n) with the aid of chemometrics. Molecules 2016, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.C.; Maillard, M.P.; Hostettmann, K. Antimicrobial steroids from the fungus Fomitopsis pinicola. Phytochemistry 1996, 41, 1041–1046. [Google Scholar] [CrossRef]
- Tai, T.; Shingu, T.; Kikuchi, T.; Tezuka, Y.; Akahori, A. Isolation of lanostane-type triterpene acids having an acetoxyl group from sclerotia of Poria cocos. Phytochemistry 1995, 40, 225–231. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, Y.; Ng, K.Y.; Chew, E.H. Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res. Treat. 2011, 126, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Shen, M.H.; Xie, X.H.; Ruan, S.M. Inhibition of breast cancer metastasis via PITPNM3 by pachymic acid. Asian Pac. J. Cancer Prev. 2012, 13, 1877–1880. [Google Scholar] [CrossRef] [PubMed]
- Cuélla, M.J.; Giner, R.M.; Recio, M.C.; Just, M.J.; Máñez, S.; Ríos, J.L. Two fungal lanostane derivatives as phospholipase A2 inhibitors. J. Nat. Prod. 1996, 59, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Liang, Z.; Jia, X.; Gapter, L.A.; Agarwal, R.; Ng, K.Y. Polyporenic acid C induces caspase-8-mediated apoptosis in human lung cancer A549 cells. Mol. Carcinog. 2009, 48, 498–507. [Google Scholar]
- Kang, H.M.; Lee, S.K.; Shin, D.S.; Lee, M.Y.; Han, D.C.; Baek, N.I.; Son, K.H.; Kwon, B.M. Dehydrotrametenolic acid selectively inhibits the growth of H-ras transformed rat2 cells and induces apoptosis through caspase-3 pathway. Life Sci. 2006, 78, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.Y.; Chen, S.J.; Jow, G.M.; Hsueh, C.W.; Jeng, C.J. Dehydroeburicoic acid induces calcium- and calpain-dependent necrosis in human U87MG glioblastomas. Chem. Res. Toxicol. 2009, 22, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y. Poria cocos cultivation by utilizing waste trunks and roots of pine. In The Third Congress of Mycological Society of China and the Sixth National Symposium on Mycology; Mycological Society of China: Beijing, China, 2003; pp. 22–25. [Google Scholar]
- Wang, X.Y. Standardized Cultivation and Processing Technology of Poria cocos; Wuhan University Press: Wuhan, China, 2006. [Google Scholar]
- Xu, B.; Zan, J.F.; He, L.S.; Su, W.; Wang, K.Q.; Liu, Y.W. A comparative analysis of pachymic acid in 27 kinds of strains of Wolfiporia cocos. Chin. Trad. Herb. Drugs 2010, 41, 647–649. [Google Scholar]
- Dong, H.J.; Xue, Z.Z.; Geng, Y.L; Wang, X.; Yang, B. Lanostane triterpenes isolated from epidermis of Poria cocos. Phytochem. Lett. 2017, 22, 102–106. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.Z.; Nie, L.; Shen, J.Y. Study on the content comparison of pachymic acid from different medicinal parts of Poria cocos (Schw.) Wolf. Lishizhen Med. Mater. Med. Res. 2015, 26, 2858–2860. [Google Scholar]
- Liu, B.; Wang, Y.D.; Nie, L.; An, J.; Wang, G.Z. Study on the content comparison of pachymic acid in different grades of Poria from diferent areas. Lishizhen Med. Mat. Med. Res. 2015, 25, 805–806. [Google Scholar]
- Li, X.; Pang, X.; Zhou, Y.; Luo, H.; Wang, C.; Shi, J. Effects of different processing methods on the content of pachymic acid in white poria and poria peel. China Pharm. 2015, 18, 1453–1455. [Google Scholar]
Sample Availability: Samples of the compounds dehydrotumulosic acid, polyporenic acid C, pachymic acid, dehydrotrametenolic acid, dehydroeburicoic acid, and Wolfiporia cocos are available from the authors. |
Analyte | Linear Regression Data | LOD (µg/mL) | LOQ (µg/mL) | ||
---|---|---|---|---|---|
Regression Equation | r2 (n = 9) | Linear Range (µg/mL) | |||
Dehydrotumulosic acid | Y = 12608x + 25719 | 0.9992 | 4.575–305 | 0.305 | 1.525 |
Polyporenic acid C | Y = 22452x + 24889 | 0.9997 | 2–200 | 0.1 | 1 |
Pachymic acid | Y = 7488.6x − 10819 | 0.9996 | 10–800 | 3 | 10 |
Dehydrotrametenolic acid | Y = 7045.4x + 38355 | 0.9992 | 8.25–550 | 1.375 | 8.25 |
Dehydroeburicoic acid | Y = 6838.8x + 68109 | 0.9993 | 5.25–700 | 0.525 | 3.5 |
Analyte | Precision (RSD, %, n = 6) | Stability (RSD, %, n = 6) | Repeatability (RSD, %, n = 6) | Recovery (%, n = 3) | |
---|---|---|---|---|---|
Intraday | Mean | RSD (%) | |||
Dehydrotumulosic acid | 2.32 | 2.69 | 4.72 | 111.6 | 4.73 |
Polyporenic acid C | 2.40 | 4.59 | 2.20 | 92.5 | 2.06 |
Pachymic acid | 2.96 | 3.20 | 2.52 | 102.2 | 5.40 |
Dehydrotrametenolic acid | 1.93 | 3.07 | 2.98 | 103.9 | 4.68 |
Dehydroeburicoic acid | 1.90 | 3.03 | 2.79 | 92.1 | 1.96 |
Analyte | Dehydro-Tumulosic Acid | Polyporenic Acid C | Pachymic Acid | Dehydro-Trametenolic Acid | Dehydro-Eburicoic Acid |
---|---|---|---|---|---|
Natural sclerotium | 344.0 ± 22.0 | 93.2 ± 2.7 | 588.9 ± 41.5 | 352.7 ± 18.3 | nd |
Surface layer of natural sclerotium | 12,300.7 ± 285.9 | 955.9 ± 21.0 | 1344 ± 27.6 | 13,534.4 ± 815.4 | 8514.6 ± 237.0 |
Bionic cultured sclerotium | 193.0 ± 18.1 | 86.7 ± 7.3 | 445.9 ± 23.0 | 56.3 ± 3.4 | nd |
Surface layer of bionic cultured sclerotium | 9388.8 ± 651.9 | 829.9 ± 56.2 | 1119.5 ± 104.6 | 8265.5 ± 591.8 | 5759.1 ± 411.3 |
Pollution-control cultured sclerotium | 597.3 ± 45.0 | 428.0 ± 12.1 | 9332.5 ± 623.0 | 534.6 ± 48.7 | nd |
Surface layer of pollution-control cultured sclerotium | 14,819.8 ± 833.8 | 18,120.0 ± 592.0 | 17,594.3 ± 1295.6 | 21,160.7 ± 1545.4 | 9060.9 ± 690.2 |
Cultured mycelium | 216.6 ± 10.5 | nd | 203.7 ± 1.9 | nd | nd |
Matured fruiting body | 216.6 ± 5.4 | 15.7 ± 2.0 | 197.6 ± 11.7 | 19.8 ± 1.6 | nd |
Analyte | tW/tR (min) | Formula | Ion Type | m/z (Experimental/Calculated) | Product Ion MS/MS (m/z) |
---|---|---|---|---|---|
Dehydrotumulosic acid | 6.660/6.662 | C31H48O4 | [M − H]− | 483.35/483.35 | 421.30, 423.40, 337.40 |
Polyporenic acid C | 6.846/6.826 | C31H46O4 | [M − H]− | 481.30/481.30 | 403.40, 387.35 |
Pachymic acid | 8.374/8.399 | C33H52O5 | [M − H]− | 527.35/527.35 | 465.30, 467.35 |
Dehydrotrametenolic acid | 11.153/11.147 | C30H46O3 | [M − H]− | 453.40/453.40 | 337.30, 371.25 |
Dehydroeburicoic acid | 11.683/11.639 | C31H48O3 | [M − H]− | 467.40/467.40 | 337.30, 339.30 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Wang, L.; Wang, X.; Deng, B.; Hu, X.; Zou, J. Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules 2018, 23, 1839. https://doi.org/10.3390/molecules23081839
Fu M, Wang L, Wang X, Deng B, Hu X, Zou J. Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules. 2018; 23(8):1839. https://doi.org/10.3390/molecules23081839
Chicago/Turabian StyleFu, Ming, Li Wang, Xianyou Wang, Boxia Deng, Xing Hu, and Juan Zou. 2018. "Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos" Molecules 23, no. 8: 1839. https://doi.org/10.3390/molecules23081839
APA StyleFu, M., Wang, L., Wang, X., Deng, B., Hu, X., & Zou, J. (2018). Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules, 23(8), 1839. https://doi.org/10.3390/molecules23081839