Building Configuration of Low-Cost Apartments in Bandung—Its Contribution to the Microclimate and Outdoor Thermal Comfort
Abstract
:1. Introduction
2. Case Study
- Parallel plot, which includes Rusun PTDI (PTDI stands for Perseroan Terbatas Dirgantara Indonesia (Indonesian Aerospace Limited Liability Company). It is a low-cost apartment for PTDI employees), as Model A and Rusun UPI (UPI stands for Universitas Pendidikan Indonesia (Indonesia University of Education). It is a university dormitory for UPI students.) as Model B
- Interspersed plot, which includes Rusun Cigugur (Model C)
- Square plot, which comprises Rusun Cingised (Model D) and Rusun Pharmindo (Model E)
3. Methods and Instruments
4. Dependence of Urban Microclimate on Building Configuration
4.1. Urban Canopy Layer in a High Density Area
4.2. Building Geometry and Configuration to Gain Outdoor Thermal Comfort
4.3. Microclimate Prognostic Model
4.4. Outdoor Thermal Comfort in a Hot and Humid Climatic Region
4.5. Result
4.5.1. Rusun Buiding Form and Configuration
4.5.2. Rusun’s Microclimate
4.5.3. Outdoor Thermal Perception Based on PET
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- KemenPUPR. Renstra KemenPUPR 2015–2019; Kementerian Pekerjaan Umum dan Perumahan Rakyat: Jakarta, Indonesia, 2015. [Google Scholar]
- Matzarakis, A.; Mayer, H. Dependence of urban climate on urban morphology. In Proceedings of the 5th Japanese-German Meeting on Urban Climatology, Freiburg, Germany, 6–8 October 2008; pp. 277–282. [Google Scholar]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Tzamir, Y.; Hoffman, M.E. Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int. J. Climatol. 2004, 24, 1729–1742. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, T.; Steemers, K.; Matzarakis, A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 2017, 34, 293–308. [Google Scholar] [CrossRef]
- Karyono, T.H. Bandung Thermal Comfort Study: Assessing the Applicability of an Adaptive Model in Indonesia. Archit. Sci. Rev. 2008, 51, 60–65. [Google Scholar] [CrossRef]
- Humphreys, M.A. Thermal Comfort Requirement, Climate and Energy. In Proceedings of the 2nd World Renewable Energy Congress, Reading, UK, 13–18 September 1992. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Build. Energy 2002, 34, 563–572. [Google Scholar] [CrossRef]
- BPS Bandung. Bandung City in Figure; Badan Pusat Statistik Kota Bandung: Bandung, Indonesia, 2016.
- Paramita, B.; Fukuda, H. Heat Intensity of Urban Built Environment in Hot Humid Climate Region. Am. J. Environ. Sci. 2014, 10, 210–218. [Google Scholar] [CrossRef]
- Paramita, B.; Fukuda, H. Public Housing in Bandung, an Assessment and Approach through Urban Physics. Adv. Mater. Res. 2014, 935, 273–276. [Google Scholar] [CrossRef]
- Alfata, M.N.F.; Hirata, N.; Kubota, T.; Nugroho, A.M.; Uno, T.; Antaryama, I.G.N.; Ekasiwi, S.N. Thermal Comfort in Naturally Ventilated Apartments in Surabaya, Indonesia. Procedia Eng. 2015, 121, 459–467. [Google Scholar] [CrossRef]
- Paramita, B.; Khidmat, R.P.; Fukuda, H. Public Flat in Indonesia, Their Role in Highly Densed City: Legal Aspect Review and Prototype Assessment. In IOP Conference Series: Earth and Environmental Science; IOPscience: Bandung, Indonesia, 2018; Volume 152. [Google Scholar]
- WMO. Guide to Meteorological Instruments and Methods of Observation; World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Lippsmeier, G. Bangunan Tropis; Erlangga: Jakarta, Indonesia, 1994. [Google Scholar]
- Collier, C.G. The impact of urban areas on weather. Q. J. R. Meteorol. Soc. 2006, 132, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B. Meteorology applied to urban air pollution problems. Atmos. Chem. Phys. 2002, 6, 555–564. [Google Scholar] [CrossRef]
- Soltani, A.; Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front. Archit. Res. 2017, 6, 529–538. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort; McGraw-Hill Companies: New York, NY, USA, 1972. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeKay, M.; Brown, G.Z. Sun, Wind and Light, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ahmed, K.S. Comfort in urban spaces: Defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build. 2003, 35, 103–110. [Google Scholar] [CrossRef]
- Sharmin, T.; Steamer, K. Effect of Canyon Geometry on Outdoor Thermal Comfort. In Proceedings of the PLEA2013—29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany, 10–12 September 2013. [Google Scholar]
- Salleh, E. Tropical Urban Street Canyons. In Tropical Sustainable Architecture; Bay, J.H., Ong, B.L., Eds.; Elsevier Ltd.: Singapore, 2006. [Google Scholar]
- Johansson, E.; Emmanuel, R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int. J. Biometeorol. 2006, 51, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Paramita, B.; Fukuda, H. Building Groups Design Strategies in Hot-humid Climate: A Dense Residential Planning in Bandung, Indonesia. In Proceedings of the PLEA2013—29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany, 10–12 September 2013; Volume 2013. [Google Scholar]
- Huttner, S.; Bruse, M.; Dostal, P. Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities. In Proceedings of the 5th Japanese-German Meeting on Urban Climatology, Freiburg, Germany, 6–8 October 2008. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Jendritzky, G.; Tinz, B. The thermal environment of the human being on the global scale. Glob. Health Action 2009, 2, 2005. [Google Scholar] [CrossRef] [PubMed]
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2014, 83, 65–78. [Google Scholar] [CrossRef]
- Paramita, B.; Fukuda, H. Urban Microclimate Prognostic Model in a Hot-Humid Climate Region. Jour Adv. Res. Dyn. Control Syst. 2018, 10, 211–216. [Google Scholar]
- Ghaffarianhoseini, A.; Berardi, U.; Ghafarianihoseini, A. Thermal performance characteristics of unshaded courtyards in hot and humid climates. Build. Environ. 2015, 87, 154–168. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Standard 55:1992 Thermal environmental conditions for human occupancy. In ASHRAE Standard; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1992. [Google Scholar]
- Nikolopoulou, M.-H.; Baker, N.; Steemers, K. Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter. Sol. Energy 2010, 70, 227–235. [Google Scholar] [CrossRef]
- Honjo, T. Thermal Comfort in Outdoor Environment. Glob. Environ. Res. 2009, 13, 43–47. [Google Scholar]
- Tahbaz, M. Psychrometric chart as a basis for outdoor thermal analysis. Int. J. Archit. Eng. Urban Plan. 2011, 21, 95–109. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Clim. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Makaremi, N.; Salleh, E.; Jaafar, M.Z.; GhaffarianHoseini, A. Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build. Environ. 2012, 48, 7–14. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Outdoor mean radiant temperature estimation in the tropical urban environment. Build. Environ. 2013, 64, 118–129. [Google Scholar] [CrossRef]
Thermal Sensation | PET Range for Taiwan (°C PET) | PET Range for Western/Middle Europe (°C PET) |
---|---|---|
Very cold | <14 | <4 |
Cold | 14–18 | 4–8 |
Cool | 18–22 | 8–13 |
Slightly cool | 22–26 | 13–18 |
Neutral | 26–30 | 18–23 |
Slightly warm | 30–34 | 23–29 |
Warm | 34–38 | 29–35 |
Hot | 38–42 | 35–41 |
Very hot | <42 | <41 |
Model | Plot | H/W | FAR | BCR (%) | GCR (%) | SA (%) | PET max (°C) | Perception |
---|---|---|---|---|---|---|---|---|
A | Parallel (W-E) | 2.73 | 1.08 | 29.0 | 9.00 | 0.35 | 37.6 | Warm |
B | Parallel (N-S) | 1.60 | 1.13 | 33.0 | 17.0 | 0.15 | 34.2 | Slightly warm |
C | Interspersed | 5.55 | 0.92 | 15.2 | 9.00 | 0.35 | 36.8 | Warm |
D | Square | 0.32 | 0.76 | 18.0 | 2.00 | 0.12 | 40.8 | Hot |
E | Square | 0.61 | 1.10 | 23.0 | 6.00 | 0.14 | 37.6 | Warm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramita, B.; Fukuda, H.; Perdana Khidmat, R.; Matzarakis, A. Building Configuration of Low-Cost Apartments in Bandung—Its Contribution to the Microclimate and Outdoor Thermal Comfort. Buildings 2018, 8, 123. https://doi.org/10.3390/buildings8090123
Paramita B, Fukuda H, Perdana Khidmat R, Matzarakis A. Building Configuration of Low-Cost Apartments in Bandung—Its Contribution to the Microclimate and Outdoor Thermal Comfort. Buildings. 2018; 8(9):123. https://doi.org/10.3390/buildings8090123
Chicago/Turabian StyleParamita, Beta, Hiroatsu Fukuda, Rendy Perdana Khidmat, and Andreas Matzarakis. 2018. "Building Configuration of Low-Cost Apartments in Bandung—Its Contribution to the Microclimate and Outdoor Thermal Comfort" Buildings 8, no. 9: 123. https://doi.org/10.3390/buildings8090123
APA StyleParamita, B., Fukuda, H., Perdana Khidmat, R., & Matzarakis, A. (2018). Building Configuration of Low-Cost Apartments in Bandung—Its Contribution to the Microclimate and Outdoor Thermal Comfort. Buildings, 8(9), 123. https://doi.org/10.3390/buildings8090123